Late gestation heat stress alters O2 regulation in placenta and neonatal heifers.

IF 3 2区 医学 Q2 DEVELOPMENTAL BIOLOGY
Leticia T Casarotto, Helen N Jones, Pascale Chavatte-Palmer, Geoffrey E Dahl
{"title":"Late gestation heat stress alters O<sub>2</sub> regulation in placenta and neonatal heifers.","authors":"Leticia T Casarotto, Helen N Jones, Pascale Chavatte-Palmer, Geoffrey E Dahl","doi":"10.1016/j.placenta.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Maternal hyperthermia (i.e. heat stress) can adversely affect placental development and function, with severity varying based on pregnancy stage. During the last half of pregnancy, cow uterine blood flow increases 4.5-fold, and decreased maternal blood circulation can reduce placental diffusion capacity, impacting fetal growth.</p><p><strong>Material and methods: </strong>Milk removal was discontinued (i.e. dried off) in multiparous pregnant Holstein cows 54 ± 5 days before expected calving and assigned to cooling (CLD) or heat stress (HT) treatments. Oxygen measurements were taken within ±3 h after birth (n = 7 per group) using the Rad-G Pulse Oximeter. RNA sequencing of cotyledonary tissue examined pathways and genes related to gas and oxygen transport.</p><p><strong>Results: </strong>Heifers exposed to late gestation in utero hypoxia (HT) had significantly lower oxygen saturation at birth compared with those from dams with normal (CLD) oxygen levels (83.4 % vs. 90.7 %, p = 0.03). The peripheral index of oxygen diffusion was also lower in HT-exposed heifers (2.04 % vs. 4.84 %, p = 0.01). Gene enrichment analysis of cotyledonary tissue revealed affected pathways, including response to hypoxia, oxygen transport, and VEGF signaling. Late gestation HT potentially influenced blood circulation and nitric oxide biosynthesis pathways, with various genes showing upregulation and downregulation.</p><p><strong>Discussion: </strong>The placenta is vital for fetal development, and late gestation hyperthermia can significantly affect its function, reducing fetal oxygen delivery and altering genes regulating placental gas and oxygen transport. These disruptions may result in fetal hypoxemia and growth restriction.</p>","PeriodicalId":20203,"journal":{"name":"Placenta","volume":"159 ","pages":"126-130"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Placenta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.placenta.2024.12.009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Maternal hyperthermia (i.e. heat stress) can adversely affect placental development and function, with severity varying based on pregnancy stage. During the last half of pregnancy, cow uterine blood flow increases 4.5-fold, and decreased maternal blood circulation can reduce placental diffusion capacity, impacting fetal growth.

Material and methods: Milk removal was discontinued (i.e. dried off) in multiparous pregnant Holstein cows 54 ± 5 days before expected calving and assigned to cooling (CLD) or heat stress (HT) treatments. Oxygen measurements were taken within ±3 h after birth (n = 7 per group) using the Rad-G Pulse Oximeter. RNA sequencing of cotyledonary tissue examined pathways and genes related to gas and oxygen transport.

Results: Heifers exposed to late gestation in utero hypoxia (HT) had significantly lower oxygen saturation at birth compared with those from dams with normal (CLD) oxygen levels (83.4 % vs. 90.7 %, p = 0.03). The peripheral index of oxygen diffusion was also lower in HT-exposed heifers (2.04 % vs. 4.84 %, p = 0.01). Gene enrichment analysis of cotyledonary tissue revealed affected pathways, including response to hypoxia, oxygen transport, and VEGF signaling. Late gestation HT potentially influenced blood circulation and nitric oxide biosynthesis pathways, with various genes showing upregulation and downregulation.

Discussion: The placenta is vital for fetal development, and late gestation hyperthermia can significantly affect its function, reducing fetal oxygen delivery and altering genes regulating placental gas and oxygen transport. These disruptions may result in fetal hypoxemia and growth restriction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Placenta
Placenta 医学-发育生物学
CiteScore
6.30
自引率
10.50%
发文量
391
审稿时长
78 days
期刊介绍: Placenta publishes high-quality original articles and invited topical reviews on all aspects of human and animal placentation, and the interactions between the mother, the placenta and fetal development. Topics covered include evolution, development, genetics and epigenetics, stem cells, metabolism, transport, immunology, pathology, pharmacology, cell and molecular biology, and developmental programming. The Editors welcome studies on implantation and the endometrium, comparative placentation, the uterine and umbilical circulations, the relationship between fetal and placental development, clinical aspects of altered placental development or function, the placental membranes, the influence of paternal factors on placental development or function, and the assessment of biomarkers of placental disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信