Fibrin scaffold encapsulated with epigallocatechin gallate microspheres promote neural regeneration and motor function recovery after traumatic spinal cord injury in rats.
Mohammed Alissa, Abdullah Alghamdi, Mohammed A Alshehri
{"title":"Fibrin scaffold encapsulated with epigallocatechin gallate microspheres promote neural regeneration and motor function recovery after traumatic spinal cord injury in rats.","authors":"Mohammed Alissa, Abdullah Alghamdi, Mohammed A Alshehri","doi":"10.1016/j.tice.2024.102691","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats. A total of sixty mature male Sprague-Dawley rats were separated into four groups of the same size: TSCI, fibrin, EGCG, and Fibrin+EGCG. Samples of tissue were gathered at the location of the injury for additional examination. The treatment groups showed significantly higher levels of neurons, antioxidative biomarkers (T-AOC: total antioxidant capacity, GSH: glutathione, and SOD: superoxide dismutase), neurofilament light polypeptide (NEFL) and interleukin 10 (IL-10) genes, and neurological function scores compared to the TSCI group, with the Fibrin+EGCG group displaying the most noticeable improvements. Throughout the treatment process, there was a notable reduction in the amounts of apoptotic and glial cells, as well as levels of malondialdehyde (MDA) and proinflammatory genes (TNF-α: tumor necrosis factor alpha and IL-1β: interleukin-1 beta), especially in the Fibrin+EGCG group compared to the TSCI group. Our findings suggest that EGCG enclosed in microspheres could enhance the prevention of injury spreading and the enhancement of pathological and behavioral symptoms when delivered to the location of spinal cord injury using a fibrin scaffold.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102691"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2024.102691","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic spinal cord injury (TSCI) is a serious medical issue where there is a loss of sensorimotor function. Current interventions continue to lack the ability to successfully enhance these conditions, therefore, it is crucial to consider alternative effective strategies. Currently, we investigated the effects of fibrin scaffold encapsulated with epigallocatechin gallate (EGCG) microspheres in the recovery of SCI in rats. A total of sixty mature male Sprague-Dawley rats were separated into four groups of the same size: TSCI, fibrin, EGCG, and Fibrin+EGCG. Samples of tissue were gathered at the location of the injury for additional examination. The treatment groups showed significantly higher levels of neurons, antioxidative biomarkers (T-AOC: total antioxidant capacity, GSH: glutathione, and SOD: superoxide dismutase), neurofilament light polypeptide (NEFL) and interleukin 10 (IL-10) genes, and neurological function scores compared to the TSCI group, with the Fibrin+EGCG group displaying the most noticeable improvements. Throughout the treatment process, there was a notable reduction in the amounts of apoptotic and glial cells, as well as levels of malondialdehyde (MDA) and proinflammatory genes (TNF-α: tumor necrosis factor alpha and IL-1β: interleukin-1 beta), especially in the Fibrin+EGCG group compared to the TSCI group. Our findings suggest that EGCG enclosed in microspheres could enhance the prevention of injury spreading and the enhancement of pathological and behavioral symptoms when delivered to the location of spinal cord injury using a fibrin scaffold.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.