Impact of photobiomodulation on neural embryoid body formation from immortalized adipose-derived stem cells.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Precious Earldom Mulaudzi, Heidi Abrahamse, Anine Crous
{"title":"Impact of photobiomodulation on neural embryoid body formation from immortalized adipose-derived stem cells.","authors":"Precious Earldom Mulaudzi, Heidi Abrahamse, Anine Crous","doi":"10.1186/s13287-024-04088-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Embryoid bodies (EBs) are three-dimensional (3D) multicellular cell aggregates that are derived from stem cell and play a pivotal role in regenerative medicine. They recapitulate many crucial aspects of the early stages of embryonic development and is the first step in the generation of various types of stem cells, including neuronal stem cells. Current methodologies for differentiating stem cells into neural embryoid bodies (NEBs) in vitro have advanced significantly, but they still have limitations which necessitate improvement. Photobiomodulation (PBM) a low powered light therapy is a non-invasive technique shown to promote stem cell proliferation and differentiation.</p><p><strong>Methods: </strong>This in vitro study elucidated the effects of photobiomodulation (PBM) on the differentiation of immortalized adipose-derived stem cells (iADSCs) into NEBs within a 3D cell culture environment. The study utilized PBM at wavelengths of 825 nm, 525 nm, and a combination of both, with fluences of 5 and 10 J/cm<sup>2</sup>. Morphology, viability, metabolic activity, and differentiation following PBM treatment was analysed.</p><p><strong>Results: </strong>The results revealed that the effects of photobiomodulation (PBM) are dose dependent. PBM, at 825 nm with a fluence of 10 J/cm<sup>2</sup>, significantly enhanced the size of neural embryoid bodies (NEBs), improved cell viability and proliferation, and reduced lactate dehydrogenase (LDH) levels, indicating minimal cell damage. Interestingly, the stem cell marker CD 44 was upregulated at 5 J/cm<sup>2</sup> in all treatment groups at 24 and 96 hpi, CD105 increased with 825 nm at 10 J/cm<sup>2</sup> at 24 hpi, which may be attributed to a heterogeneous cell population within the NEBs. Pax6 expression showed transient activation. Nestin was upregulated at 825 nm with 10 J/cm<sup>2</sup> at 96 hpi, suggesting a promotion of neural precursor populations. GFAP an intermediate filament protein was upregulated at 825 nm at 10 J/cm2 at both 24 and 96 hpi. SOX2, a pluripotency marker, was expressed at 5 J/cm<sup>2</sup> across all wavelengths. Neu N a neuronal nuclei marker was expressed at 5 J/cm<sup>2</sup> in all treatments at 24 hpi and over time the expression was observed in all treatment groups at 10 J/cm<sup>2</sup>.</p><p><strong>Conclusion: </strong>In conclusion, the application of PBM at 825 nm with a fluence of 10 J/cm<sup>2</sup> during the differentiation of iADSCs into NEBs resulted in optimal differentiation. Notably, the neuronal marker Nestin was significantly upregulated, highlighting the potential of the PBM approach for enhancing neuronal differentiation its promising applications in regenerative medicine.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"489"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662703/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04088-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Embryoid bodies (EBs) are three-dimensional (3D) multicellular cell aggregates that are derived from stem cell and play a pivotal role in regenerative medicine. They recapitulate many crucial aspects of the early stages of embryonic development and is the first step in the generation of various types of stem cells, including neuronal stem cells. Current methodologies for differentiating stem cells into neural embryoid bodies (NEBs) in vitro have advanced significantly, but they still have limitations which necessitate improvement. Photobiomodulation (PBM) a low powered light therapy is a non-invasive technique shown to promote stem cell proliferation and differentiation.

Methods: This in vitro study elucidated the effects of photobiomodulation (PBM) on the differentiation of immortalized adipose-derived stem cells (iADSCs) into NEBs within a 3D cell culture environment. The study utilized PBM at wavelengths of 825 nm, 525 nm, and a combination of both, with fluences of 5 and 10 J/cm2. Morphology, viability, metabolic activity, and differentiation following PBM treatment was analysed.

Results: The results revealed that the effects of photobiomodulation (PBM) are dose dependent. PBM, at 825 nm with a fluence of 10 J/cm2, significantly enhanced the size of neural embryoid bodies (NEBs), improved cell viability and proliferation, and reduced lactate dehydrogenase (LDH) levels, indicating minimal cell damage. Interestingly, the stem cell marker CD 44 was upregulated at 5 J/cm2 in all treatment groups at 24 and 96 hpi, CD105 increased with 825 nm at 10 J/cm2 at 24 hpi, which may be attributed to a heterogeneous cell population within the NEBs. Pax6 expression showed transient activation. Nestin was upregulated at 825 nm with 10 J/cm2 at 96 hpi, suggesting a promotion of neural precursor populations. GFAP an intermediate filament protein was upregulated at 825 nm at 10 J/cm2 at both 24 and 96 hpi. SOX2, a pluripotency marker, was expressed at 5 J/cm2 across all wavelengths. Neu N a neuronal nuclei marker was expressed at 5 J/cm2 in all treatments at 24 hpi and over time the expression was observed in all treatment groups at 10 J/cm2.

Conclusion: In conclusion, the application of PBM at 825 nm with a fluence of 10 J/cm2 during the differentiation of iADSCs into NEBs resulted in optimal differentiation. Notably, the neuronal marker Nestin was significantly upregulated, highlighting the potential of the PBM approach for enhancing neuronal differentiation its promising applications in regenerative medicine.

光生物调节对永生化脂肪干细胞形成神经胚状体的影响。
背景:胚状体(EBs)是来源于干细胞的三维(3D)多细胞聚集体,在再生医学中起着关键作用。它们概括了胚胎发育早期阶段的许多关键方面,是产生各种类型干细胞(包括神经干细胞)的第一步。目前体外将干细胞分化为神经胚状体(neb)的方法取得了显著进展,但仍有局限性,需要改进。光生物调节(PBM)是一种低功率光疗法,是一种促进干细胞增殖和分化的非侵入性技术。方法:本体外研究阐明了光生物调节(PBM)在三维细胞培养环境中对永生化脂肪来源干细胞(iADSCs)向neb分化的影响。该研究利用了波长为825 nm、525 nm以及两者结合的PBM,影响分别为5和10 J/cm2。分析了PBM处理后的形态学、活力、代谢活性和分化。结果:光生物调节(PBM)的作用具有剂量依赖性。在825 nm, 10 J/cm2的作用下,PBM显著增加了神经胚状体(neb)的大小,提高了细胞活力和增殖,降低了乳酸脱氢酶(LDH)水平,表明细胞损伤最小。有趣的是,干细胞标记物cd44在24和96 hpi时以5 J/cm2的速度上调,CD105在24 hpi时以10 J/cm2的速度增加825 nm,这可能归因于neb内的异质细胞群体。Pax6表达呈瞬时激活。Nestin在825 nm和96 hpi下以10 J/cm2的速度上调,表明其促进了神经前体种群。GFAP是一种中间丝蛋白,在24和96 hpi下,在825 nm、10 J/cm2处上调。多能性标记SOX2在所有波长下均以5 J/cm2的速度表达。Neu N a神经元细胞核标记物在24 hpi时均以5 J/cm2的速度表达,随着时间的推移,所有处理组均以10 J/cm2的速度表达。结论:综上所述,在825 nm施加10 J/cm2的PBM诱导下,iADSCs向neb分化效果最佳。值得注意的是,神经元标记物Nestin显著上调,突出了PBM方法在增强神经元分化方面的潜力及其在再生医学中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信