Seven years of chronic fertilization affects how plant functional types respond to drought, but not plant production.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Meghan L Avolio, Sally E Koerner
{"title":"Seven years of chronic fertilization affects how plant functional types respond to drought, but not plant production.","authors":"Meghan L Avolio, Sally E Koerner","doi":"10.1007/s00442-024-05648-2","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen deposition continues to change grassland plant community composition particularly in more mesic systems; however, whether these altered plant communities will respond differently to other global change factors remains to be seen. Here, we explore how nutrient-altered tallgrass prairie responds to drought. Seven years of nutrient treatments (control, nitrogen (N), phosphorus (P), and N + P) resulted in significantly different plant communities. Within this experimental context we imposed a 3-year drought followed by 3 years of recovery from drought. The response of plant functional types depended on the nutrient treatment. During recovery years, C<sub>4</sub> grasses recovered in the first year in all treatments but the N + P treatment, where instead annual grasses increased. These differential responses during recovery resulted in greater shifts in community composition in the N + P treatment compared with the controls. Despite the effects on community composition, we found no interaction between nutrient treatment and drought treatment on species richness or evenness and standing biomass during drought or recovery. We found drought induced shifts in plant functional groups led to the composition of previously droughted N + P plot becoming more dominated by annual grasses during the recovery years, likely creating a lasting legacy of drought.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"14"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05648-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen deposition continues to change grassland plant community composition particularly in more mesic systems; however, whether these altered plant communities will respond differently to other global change factors remains to be seen. Here, we explore how nutrient-altered tallgrass prairie responds to drought. Seven years of nutrient treatments (control, nitrogen (N), phosphorus (P), and N + P) resulted in significantly different plant communities. Within this experimental context we imposed a 3-year drought followed by 3 years of recovery from drought. The response of plant functional types depended on the nutrient treatment. During recovery years, C4 grasses recovered in the first year in all treatments but the N + P treatment, where instead annual grasses increased. These differential responses during recovery resulted in greater shifts in community composition in the N + P treatment compared with the controls. Despite the effects on community composition, we found no interaction between nutrient treatment and drought treatment on species richness or evenness and standing biomass during drought or recovery. We found drought induced shifts in plant functional groups led to the composition of previously droughted N + P plot becoming more dominated by annual grasses during the recovery years, likely creating a lasting legacy of drought.

7年的慢性施肥会影响植物功能类型对干旱的反应,但不会影响植物产量。
氮沉降继续改变草地植物群落组成,特别是在更多的中等系统中;然而,这些改变的植物群落是否会对其他全球变化因素做出不同的反应还有待观察。在这里,我们探索营养改变的高草草原如何应对干旱。7年的营养处理(对照、氮(N)、磷(P)和N + P)导致了显著的植物群落差异。在这个实验背景下,我们实施了3年的干旱,然后是3年的干旱恢复。植物功能类型的响应取决于养分处理。在恢复年份,除N + P处理外,C4禾草在所有处理的第一年都有所恢复,而N + P处理反而增加了一年生禾草。与对照组相比,恢复期间的这些差异反应导致N + P处理的群落组成发生了更大的变化。尽管对群落组成有影响,但在干旱或恢复期间,营养处理和干旱处理对物种丰富度、均匀度和直立生物量没有交互作用。我们发现干旱引起的植物功能群的变化导致以前干旱的N + P地块的组成在恢复期间变得更多地以一年生草为主,可能造成持久的干旱遗产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信