Computational Evaluation of Fusarium nygamai Compounds as AcrD Efflux Pump Protein Inhibitors of Salmonella Typhimurium.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lennin Isaac Garrido-Palazuelos, José Roberto Aguirre-Sánchez, Maria Fernanda Sandoval-González, Mamuna Mukhtar, Omar Guerra-Meza, Haris Ahmed-Khan
{"title":"Computational Evaluation of Fusarium nygamai Compounds as AcrD Efflux Pump Protein Inhibitors of Salmonella Typhimurium.","authors":"Lennin Isaac Garrido-Palazuelos, José Roberto Aguirre-Sánchez, Maria Fernanda Sandoval-González, Mamuna Mukhtar, Omar Guerra-Meza, Haris Ahmed-Khan","doi":"10.1007/s12033-024-01329-w","DOIUrl":null,"url":null,"abstract":"<p><p>In Salmonella Typhimurium, efflux pump proteins, such as AcrD actively expel drugs and hazardous chemicals from bacterial cells, resulting in treatment failure and the emergence of antibiotic-resistant variants. Focusing on AcrD may lead to the development of novel antimicrobials against multidrug-resistant bacteria. However, challenges persist in achieving high selectivity, low toxicity, and effective bacterial penetration. Natural products, particularly microbial secondary metabolites, possess distinct chemical structures that may target the efflux pump systems. The efflux pump inhibitor capabilities of Fusarium nygamai compounds in Salmonella have not been previously investigated. This study employed molecular docking and molecular dynamics simulations to evaluate 25 F. nygamai compounds as potential inhibitors of AcrD. Additionally, the pharmacological characteristics of these substances were examined. Molecular docking results revealed that 3,6-Dimethoxy-2,5-dinitrobenzonitrile, methyl (2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate, and 7-Methyl-5-nitro-1,4-dihydro-quinoxaline-2,3-dione exhibited the highest binding energies with AcrD. Furthermore, molecular dynamics simulations indicated stable ligand-receptor complex variations over time. This study contributes to the efforts against antibiotic resistance and the improvement of Salmonella infection treatment outcomes globally by facilitating the development of novel therapeutic approaches and enhancing antibiotic efficacy.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01329-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In Salmonella Typhimurium, efflux pump proteins, such as AcrD actively expel drugs and hazardous chemicals from bacterial cells, resulting in treatment failure and the emergence of antibiotic-resistant variants. Focusing on AcrD may lead to the development of novel antimicrobials against multidrug-resistant bacteria. However, challenges persist in achieving high selectivity, low toxicity, and effective bacterial penetration. Natural products, particularly microbial secondary metabolites, possess distinct chemical structures that may target the efflux pump systems. The efflux pump inhibitor capabilities of Fusarium nygamai compounds in Salmonella have not been previously investigated. This study employed molecular docking and molecular dynamics simulations to evaluate 25 F. nygamai compounds as potential inhibitors of AcrD. Additionally, the pharmacological characteristics of these substances were examined. Molecular docking results revealed that 3,6-Dimethoxy-2,5-dinitrobenzonitrile, methyl (2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate, and 7-Methyl-5-nitro-1,4-dihydro-quinoxaline-2,3-dione exhibited the highest binding energies with AcrD. Furthermore, molecular dynamics simulations indicated stable ligand-receptor complex variations over time. This study contributes to the efforts against antibiotic resistance and the improvement of Salmonella infection treatment outcomes globally by facilitating the development of novel therapeutic approaches and enhancing antibiotic efficacy.

鼠伤寒沙门菌AcrD外排泵蛋白抑制剂的计算评价
在鼠伤寒沙门氏菌中,外排泵蛋白,如AcrD,会积极地将药物和有害化学物质从细菌细胞中排出,导致治疗失败和抗生素耐药变体的出现。关注AcrD可能会导致开发针对多重耐药细菌的新型抗菌剂。然而,在实现高选择性、低毒性和有效的细菌渗透方面仍然存在挑战。天然产物,特别是微生物次生代谢物,具有独特的化学结构,可能针对外排泵系统。尼格玛镰刀菌化合物在沙门氏菌中的外排泵抑制能力尚未得到研究。本研究采用分子对接和分子动力学模拟来评价25种F. nygamai化合物作为AcrD的潜在抑制剂。此外,研究了这些物质的药理学特性。分子对接结果表明,3,6-二甲氧基-2,5-二硝基苯并腈、甲基(2-氧-3-苯基喹啉-1(2H)-基)乙酸和7-甲基-5-硝基-1,4-二氢喹啉-2,3-二酮与AcrD的结合能最高。此外,分子动力学模拟表明,随着时间的推移,配体-受体复合物的变化是稳定的。本研究通过促进新治疗方法的开发和提高抗生素疗效,为全球对抗抗生素耐药性和改善沙门氏菌感染的治疗效果做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信