Asymmetric succession in soil microbial communities enhances the competitive advantage of invasive alien plants.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Mengxin Zhao, Yunfeng Yang, Han Zhang, Qiao Li, Xiaoxun Zhao, Xue Guo, Wanxue Liu, Fanghao Wan
{"title":"Asymmetric succession in soil microbial communities enhances the competitive advantage of invasive alien plants.","authors":"Mengxin Zhao, Yunfeng Yang, Han Zhang, Qiao Li, Xiaoxun Zhao, Xue Guo, Wanxue Liu, Fanghao Wan","doi":"10.1186/s40168-024-01989-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biological invasions pose an escalating threat to native ecosystems. The accumulation of invasive alien plants worldwide is not saturated yet, underscoring the persistent and growing impact of invasions. Soil microorganisms play a key role in the process of alien plant invasion. However, the temporal dynamics of microbial communities has rarely been determined during the invasion owing to the dearth of long-term, in situ experimental systems.</p><p><strong>Results: </strong>Here, we examined the temporal succession of soil microbial communities 8 years after experiment setup in a common garden. Bacterial communities displayed divergent temporal succession, with invasive plants exhibiting higher turnover rates. Invasive alien plants reduced stochasticity in bacterial communities, likely acting as an environmental filter on community assembly. Plant growth-promoting microbes underwent higher succession rates in invasive alien plants compared to native plants, suggesting that invasive alien plants may possess a distinct advantage in fostering a favorable microbiota for their own growth and establishment. In sharp contrast, native plants selectively increased succession rates of specific plant pathogens. Furthermore, the microbial co-occurrence network was more complex in invasive plants, suggesting that invasive plants foster intricate relationships among microbial communities.</p><p><strong>Conclusions: </strong>Therefore, the asymmetric succession in soil microbial communities enables invasive plants recruit beneficial microbiota from the surrounding soil. These results deepen our understanding of the mechanism underlying plant invasion and provide novel insights into predicting the ecological consequences resulting from widespread plant invasion. This knowledge can be incorporated into management strategies to address the evolving challenges posed by invasive plants. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"12 1","pages":"265"},"PeriodicalIF":13.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01989-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Biological invasions pose an escalating threat to native ecosystems. The accumulation of invasive alien plants worldwide is not saturated yet, underscoring the persistent and growing impact of invasions. Soil microorganisms play a key role in the process of alien plant invasion. However, the temporal dynamics of microbial communities has rarely been determined during the invasion owing to the dearth of long-term, in situ experimental systems.

Results: Here, we examined the temporal succession of soil microbial communities 8 years after experiment setup in a common garden. Bacterial communities displayed divergent temporal succession, with invasive plants exhibiting higher turnover rates. Invasive alien plants reduced stochasticity in bacterial communities, likely acting as an environmental filter on community assembly. Plant growth-promoting microbes underwent higher succession rates in invasive alien plants compared to native plants, suggesting that invasive alien plants may possess a distinct advantage in fostering a favorable microbiota for their own growth and establishment. In sharp contrast, native plants selectively increased succession rates of specific plant pathogens. Furthermore, the microbial co-occurrence network was more complex in invasive plants, suggesting that invasive plants foster intricate relationships among microbial communities.

Conclusions: Therefore, the asymmetric succession in soil microbial communities enables invasive plants recruit beneficial microbiota from the surrounding soil. These results deepen our understanding of the mechanism underlying plant invasion and provide novel insights into predicting the ecological consequences resulting from widespread plant invasion. This knowledge can be incorporated into management strategies to address the evolving challenges posed by invasive plants. Video Abstract.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信