{"title":"Leucinostatins target Plasmodium mitochondria to block malaria transmission.","authors":"Guodong Niu, Xiaohong Wang, Jun Li","doi":"10.1186/s13071-024-06608-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Malaria remains a critical disease. Leucinostatins from the fungus Purpureocillium lilacinum inhibited the transmission of Plasmodium falciparum to mosquitoes via contact.</p><p><strong>Methods: </strong>Here, we modified the leucinostatin B (LB) C-terminus to make derivatives and examined their inhibition against malaria transmission to mosquitoes. Fluorescence-labeled leucinostatins were incubated with intact gametocytes and were examined under microscopy to detect the targets of leucinostatins. We also analyzed leucinostatins' general cytotoxicity and hemolysis.</p><p><strong>Results: </strong>The results showed that the derivatives with -H, -CH<sub>3</sub>, -Atto495, and -Biotin at C-terminus had EC<sub>50</sub> of 1.5 nM, 0.2 nM, 4.2 nM, and 42 nM, respectively. Atto495 and biotin are similar in size and much bigger than -CH<sub>3</sub> and -H. Based on reverse-phase HPLC elution time, we found that LB-Biotin had much higher hydrophobicity than the others, consistent with its lowest malaria transmission-blocking activity. Fluorescence microscopy showed that LB-Atto495 colocalized with mitochondria inside intact P. falciparum gametocytes. We found that leucinostatin A significantly inhibited the proliferation of human nucleated cells with IC<sub>50</sub> around 47 nM and it did not lyse erythrocytes at 100 μM.</p><p><strong>Conclusions: </strong>We conclude that the leucinostatins pass through the cytoplasmic membrane without lysing cells and interact with molecules specifically in mitochondria. Therefore, leucinostatins should be ideal inhibitors against mobile parasites, such as ookinetes and sporozoites, during malaria transmission.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"524"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06608-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Malaria remains a critical disease. Leucinostatins from the fungus Purpureocillium lilacinum inhibited the transmission of Plasmodium falciparum to mosquitoes via contact.
Methods: Here, we modified the leucinostatin B (LB) C-terminus to make derivatives and examined their inhibition against malaria transmission to mosquitoes. Fluorescence-labeled leucinostatins were incubated with intact gametocytes and were examined under microscopy to detect the targets of leucinostatins. We also analyzed leucinostatins' general cytotoxicity and hemolysis.
Results: The results showed that the derivatives with -H, -CH3, -Atto495, and -Biotin at C-terminus had EC50 of 1.5 nM, 0.2 nM, 4.2 nM, and 42 nM, respectively. Atto495 and biotin are similar in size and much bigger than -CH3 and -H. Based on reverse-phase HPLC elution time, we found that LB-Biotin had much higher hydrophobicity than the others, consistent with its lowest malaria transmission-blocking activity. Fluorescence microscopy showed that LB-Atto495 colocalized with mitochondria inside intact P. falciparum gametocytes. We found that leucinostatin A significantly inhibited the proliferation of human nucleated cells with IC50 around 47 nM and it did not lyse erythrocytes at 100 μM.
Conclusions: We conclude that the leucinostatins pass through the cytoplasmic membrane without lysing cells and interact with molecules specifically in mitochondria. Therefore, leucinostatins should be ideal inhibitors against mobile parasites, such as ookinetes and sporozoites, during malaria transmission.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.