Azadirachtin disrupts ecdysone signaling and alters sand fly immunity.

IF 3 2区 医学 Q1 PARASITOLOGY
Cecilia Stahl Vieira, Sara Bisogno, Marco Salvemini, Erich Loza Telleria, Petr Volf
{"title":"Azadirachtin disrupts ecdysone signaling and alters sand fly immunity.","authors":"Cecilia Stahl Vieira, Sara Bisogno, Marco Salvemini, Erich Loza Telleria, Petr Volf","doi":"10.1186/s13071-024-06589-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis.</p><p><strong>Methods: </strong>Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR).</p><p><strong>Results: </strong>Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression.</p><p><strong>Conclusions: </strong>These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"526"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06589-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Leishmaniasis is a group of neglected vector-borne diseases transmitted by phlebotomine sand flies. Leishmania parasites must overcome various defenses in the sand fly midgut, including the insects's immune response. Insect immunity is regulated by the ecdysone hormone, which binds to its nuclear receptor (EcR) and activates the transcription of genes involved in insect immunity. However, the role of ecdysone in sand fly immunity has never been studied. Phlebotomus perniciosus is a natural vector of Leishmania infantum; here, we manipulated its neuroendocrine system using azadirachtin (Aza), a natural compound known to affect ecdysone synthesis.

Methods: Phlebotomus perniciosus larvae and adult females were fed on food containing either Aza alone or Aza plus ecdysone, and the effects on mortality and ecdysis were evaluated. Genes related to ecdysone signaling and immunity were identified in P. perniciosus, and the expression of antimicrobial peptides (AMPs), EcR, the ecdysone-induced genes Eip74EF and Eip75B, and the transcription factor serpent were analyzed using quantitative polymerase chain reaction (PCR).

Results: Aza treatment inhibited molting of first-instar (L1) larvae to L2, with only 10% of larvae molting compared to 95% in the control group. Serpent and Eip74EF, attacin, defensin 1, and defensin 2 genes were downregulated by Aza treatment in larvae. Similarly, Aza-treated adult females also presented suppression of ecdysone signaling-related genes and the AMPs attacin and defensin 2. Notably, all gene repression caused by Aza was reversed by adding ecdysone concomitantly with Aza to the larval or female food, indicating that these genes are effective markers for ecdysone repression.

Conclusions: These results highlight the critical role of ecdysone in regulating the development and immunity of P. perniciosus, which potentially could interfere with Leishmania infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Parasites & Vectors
Parasites & Vectors 医学-寄生虫学
CiteScore
6.30
自引率
9.40%
发文量
433
审稿时长
1.4 months
期刊介绍: Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish. Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信