Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhibo Zhao, Peng Wang, Ziyang Li, Xingchen Wei, Shishuo Li, Xiaoqing Lu, Shimin Dai, Benzhao Huang, Zhentao Man, Wei Li
{"title":"Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration.","authors":"Zhibo Zhao, Peng Wang, Ziyang Li, Xingchen Wei, Shishuo Li, Xiaoqing Lu, Shimin Dai, Benzhao Huang, Zhentao Man, Wei Li","doi":"10.1186/s12951-024-02965-9","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"786"},"PeriodicalIF":10.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02965-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信