Pathways and risk analysis of arsenic and heavy metal pollution in riverine water: Application of multivariate statistics and USEPA-recommended risk assessment models.

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Kifayatullah Khan, Muhammad Sajawal Khan, Muhammad Younas, Muhammad Yaseen, Abdullah G Al-Sehemi, Yasar N Kavil, Chao Su, Niaz Ali, Afsheen Maryam, Ruoyu Liang
{"title":"Pathways and risk analysis of arsenic and heavy metal pollution in riverine water: Application of multivariate statistics and USEPA-recommended risk assessment models.","authors":"Kifayatullah Khan, Muhammad Sajawal Khan, Muhammad Younas, Muhammad Yaseen, Abdullah G Al-Sehemi, Yasar N Kavil, Chao Su, Niaz Ali, Afsheen Maryam, Ruoyu Liang","doi":"10.1016/j.jconhyd.2024.104483","DOIUrl":null,"url":null,"abstract":"<p><p>This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities. Along the monitored sites (S1-S10), the mass flow of ∑metals showed a dynamic pattern: progressively increasing downstream, decreasing at S6-S7, rising again at S7-S8, and then steadily declining toward S10, with Ni being the most abundant metal, followed by Cr > As> Cu > Mn > Co > Zn > Hg > Cd > Pb. The As and Heavy Metal Pollution Index (HPI), As and Heavy Metal Evaluation Index (HEI), and Pollution Index (PI) revealed variations in pollution levels, ranking the metals in the orders of Co > As> Cr > Cd > Mn > Hg > Ni > Pb > Cu > Zn, As> Cr > Ni > Hg > Cd > Co > Mn > Cu > Zn > Pb, and Hg > Ni > As> Co > Cu > Cd > Mn > Zn > Pb, respectively. However, according to the risk assessment, overall individual metal contamination in the River Swat water was below the ecological risk threshold (ERI 〈110). Where, the Chronic Daily Intakes (CDIs), Hazard Quotients (HQs), Hazard Indices (HIs), Cancer Risks (CRs), and Total Cancer Risks (TCRs) of Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb associated with daily river water intake and dermal contact indicate that long-term exposure to untreated river water may pose both carcinogenic and non-carcinogenic health risks to residents.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104483"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2024.104483","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzed surface water from the River Swat, Pakistan, using inductively coupled plasma mass spectrometry, multivariate statistical techniques, and US-EPA risk assessment models to evaluate the concentrations, distribution, pathways, and potential risks of arsenic (As) and heavy metals, including chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg), and lead (Pb). The results revealed significant correlations (p ≤ 0.01) among metals that indicated common pollution sources, likely influenced by anthropogenic point and non-point activities. Along the monitored sites (S1-S10), the mass flow of ∑metals showed a dynamic pattern: progressively increasing downstream, decreasing at S6-S7, rising again at S7-S8, and then steadily declining toward S10, with Ni being the most abundant metal, followed by Cr > As> Cu > Mn > Co > Zn > Hg > Cd > Pb. The As and Heavy Metal Pollution Index (HPI), As and Heavy Metal Evaluation Index (HEI), and Pollution Index (PI) revealed variations in pollution levels, ranking the metals in the orders of Co > As> Cr > Cd > Mn > Hg > Ni > Pb > Cu > Zn, As> Cr > Ni > Hg > Cd > Co > Mn > Cu > Zn > Pb, and Hg > Ni > As> Co > Cu > Cd > Mn > Zn > Pb, respectively. However, according to the risk assessment, overall individual metal contamination in the River Swat water was below the ecological risk threshold (ERI 〈110). Where, the Chronic Daily Intakes (CDIs), Hazard Quotients (HQs), Hazard Indices (HIs), Cancer Risks (CRs), and Total Cancer Risks (TCRs) of Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb associated with daily river water intake and dermal contact indicate that long-term exposure to untreated river water may pose both carcinogenic and non-carcinogenic health risks to residents.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信