Brain MRI volumetry and atrophy rating scales as predictors of amyloid status and eligibility for anti-amyloid treatment in a real-world memory clinic setting.
A Zilioli, A Rosenberg, R Mohanty, A Matton, T Granberg, G Hagman, J Lötjönen, M Kivipelto, E Westman
{"title":"Brain MRI volumetry and atrophy rating scales as predictors of amyloid status and eligibility for anti-amyloid treatment in a real-world memory clinic setting.","authors":"A Zilioli, A Rosenberg, R Mohanty, A Matton, T Granberg, G Hagman, J Lötjönen, M Kivipelto, E Westman","doi":"10.1007/s00415-024-12853-9","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting amyloid status is crucial in light of upcoming disease-modifying therapies and the need to identify treatment-eligible patients with Alzheimer's disease. In our study, we aimed to predict CSF-amyloid status and eligibility for anti-amyloid treatment in a memory clinic by (I) comparing the performance of visual/automated rating scales and MRI volumetric analysis and (II) combining MRI volumetric data with neuropsychological tests and APOE4 status. Two hundred ninety patients underwent a comprehensive assessment. The cNeuro cMRI software (Combinostics Oy) provided automated computed rating scales and volumetric analysis. Amyloid status was determined using data-driven CSF biomarker cutoffs (Aβ42/Aβ40 ratio), and eligibility for anti-Aβ treatment was assessed according to recent recommendations published after the FDA approval of the anti-Aβ drug aducanumab. The automated rating scales and volumetric analysis demonstrated higher performance compared to visual assessment in predicting Aβ status, especially for parietal-GCA (AUC = 0.70), MTA (AUC = 0.66) scores, hippocampal (AUC = 0.68), and angular gyrus (AUC = 0.69) volumes, despite low global accuracy. When we combined hippocampal and angular gyrus volumes with RAVLT immediate recall and APOE4 status, we achieved the highest accuracy (AUC = 0.82), which remained high even in predicting anti-Aβ treatment eligibility (AUC = 0.81). Our study suggests that automated analysis of atrophy rating scales and brain volumetry outperforms operator-dependent visual rating scales. When combined with neuropsychological and genetic information, this computerized approach may play a crucial role not only in a research context but also in a real-world memory clinic. This integration results in a high level of accuracy for predicting amyloid-CSF status and anti-Aβ treatment eligibility.</p>","PeriodicalId":16558,"journal":{"name":"Journal of Neurology","volume":"272 1","pages":"84"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00415-024-12853-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting amyloid status is crucial in light of upcoming disease-modifying therapies and the need to identify treatment-eligible patients with Alzheimer's disease. In our study, we aimed to predict CSF-amyloid status and eligibility for anti-amyloid treatment in a memory clinic by (I) comparing the performance of visual/automated rating scales and MRI volumetric analysis and (II) combining MRI volumetric data with neuropsychological tests and APOE4 status. Two hundred ninety patients underwent a comprehensive assessment. The cNeuro cMRI software (Combinostics Oy) provided automated computed rating scales and volumetric analysis. Amyloid status was determined using data-driven CSF biomarker cutoffs (Aβ42/Aβ40 ratio), and eligibility for anti-Aβ treatment was assessed according to recent recommendations published after the FDA approval of the anti-Aβ drug aducanumab. The automated rating scales and volumetric analysis demonstrated higher performance compared to visual assessment in predicting Aβ status, especially for parietal-GCA (AUC = 0.70), MTA (AUC = 0.66) scores, hippocampal (AUC = 0.68), and angular gyrus (AUC = 0.69) volumes, despite low global accuracy. When we combined hippocampal and angular gyrus volumes with RAVLT immediate recall and APOE4 status, we achieved the highest accuracy (AUC = 0.82), which remained high even in predicting anti-Aβ treatment eligibility (AUC = 0.81). Our study suggests that automated analysis of atrophy rating scales and brain volumetry outperforms operator-dependent visual rating scales. When combined with neuropsychological and genetic information, this computerized approach may play a crucial role not only in a research context but also in a real-world memory clinic. This integration results in a high level of accuracy for predicting amyloid-CSF status and anti-Aβ treatment eligibility.
期刊介绍:
The Journal of Neurology is an international peer-reviewed journal which provides a source for publishing original communications and reviews on clinical neurology covering the whole field.
In addition, Letters to the Editors serve as a forum for clinical cases and the exchange of ideas which highlight important new findings. A section on Neurological progress serves to summarise the major findings in certain fields of neurology. Commentaries on new developments in clinical neuroscience, which may be commissioned or submitted, are published as editorials.
Every neurologist interested in the current diagnosis and treatment of neurological disorders needs access to the information contained in this valuable journal.