Metabolic analysis reveals the contribution of mechanosensitive channel MscM to extracellular release of glutamate in glycogen-deficient Synechococcus elongatus.

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuichi Kato, Kouhei Kamasaka, Mami Matsuda, Hiroko Koizumi, Ryudo Ohbayashi, Hiroki Ashida, Akihiko Kondo, Tomohisa Hasunuma
{"title":"Metabolic analysis reveals the contribution of mechanosensitive channel MscM to extracellular release of glutamate in glycogen-deficient Synechococcus elongatus.","authors":"Yuichi Kato, Kouhei Kamasaka, Mami Matsuda, Hiroko Koizumi, Ryudo Ohbayashi, Hiroki Ashida, Akihiko Kondo, Tomohisa Hasunuma","doi":"10.1016/j.jbiosc.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>In bacteria, mechanosensitive channels mediate extracellular release of osmolytes, including glutamate, functioning as safety valves upon osmotic downshift. In cyanobacteria, the role of mechanosensitive channels has not been completely elucidated. Recently, the glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 was found to release glutamate extracellularly, giving rise to a hypothesis that the role of mechanosensitive channels in cyanobacteria is conserved. Using the ΔglgC mutant as the model, the present study aimed to examine whether the putative mechanosensitive channel protein MscM mediates the extracellular release of glutamate. Compared to the ΔglgC mutant, the ΔglgC ΔmscM mutant was found to release less glutamate and aspartate extracellularly. In addition, intracellular levels of these amino acids were significantly higher in the ΔglgC ΔmscM mutant than in the ΔglgC mutant. These results suggested that MscM mediates the extracellular release of glutamate and aspartate in glycogen-deficient cyanobacteria. Furthermore, the ΔglgC ΔmscM mutant exhibited more elongated cell shapes compared to the wild type and ΔglgC single mutant, suggesting that the deletion of the mscM gene intensified turgor pressure and/or that MscM is involved in cell division. Through metabolic analysis, the present study revealed that mechanosensitive channel MscM in cyanobacteria is involved in the extracellular release of amino acids.</p>","PeriodicalId":15199,"journal":{"name":"Journal of bioscience and bioengineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of bioscience and bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiosc.2024.12.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In bacteria, mechanosensitive channels mediate extracellular release of osmolytes, including glutamate, functioning as safety valves upon osmotic downshift. In cyanobacteria, the role of mechanosensitive channels has not been completely elucidated. Recently, the glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 was found to release glutamate extracellularly, giving rise to a hypothesis that the role of mechanosensitive channels in cyanobacteria is conserved. Using the ΔglgC mutant as the model, the present study aimed to examine whether the putative mechanosensitive channel protein MscM mediates the extracellular release of glutamate. Compared to the ΔglgC mutant, the ΔglgC ΔmscM mutant was found to release less glutamate and aspartate extracellularly. In addition, intracellular levels of these amino acids were significantly higher in the ΔglgC ΔmscM mutant than in the ΔglgC mutant. These results suggested that MscM mediates the extracellular release of glutamate and aspartate in glycogen-deficient cyanobacteria. Furthermore, the ΔglgC ΔmscM mutant exhibited more elongated cell shapes compared to the wild type and ΔglgC single mutant, suggesting that the deletion of the mscM gene intensified turgor pressure and/or that MscM is involved in cell division. Through metabolic analysis, the present study revealed that mechanosensitive channel MscM in cyanobacteria is involved in the extracellular release of amino acids.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of bioscience and bioengineering
Journal of bioscience and bioengineering 生物-生物工程与应用微生物
CiteScore
5.90
自引率
3.60%
发文量
144
审稿时长
51 days
期刊介绍: The Journal of Bioscience and Bioengineering is a research journal publishing original full-length research papers, reviews, and Letters to the Editor. The Journal is devoted to the advancement and dissemination of knowledge concerning fermentation technology, biochemical engineering, food technology and microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信