Characterization of a Novel KPC-2 Variant, KPC-228, Conferring Resistance to Ceftazidime-Avibactam in an ST11-KL64 Hypervirulent Klebsiella pneumoniae.

IF 4.9 2区 医学 Q1 INFECTIOUS DISEASES
Peiyao Zhou, Haojin Gao, Meilan Li, Chunyang Wu, Weihua Han, Cailing Wan, Li Shen, Xinru Yuan, Junhong Shi, Yu Huang, Jianbo Lv, Ying Zhou, Fangyou Yu
{"title":"Characterization of a Novel KPC-2 Variant, KPC-228, Conferring Resistance to Ceftazidime-Avibactam in an ST11-KL64 Hypervirulent Klebsiella pneumoniae.","authors":"Peiyao Zhou, Haojin Gao, Meilan Li, Chunyang Wu, Weihua Han, Cailing Wan, Li Shen, Xinru Yuan, Junhong Shi, Yu Huang, Jianbo Lv, Ying Zhou, Fangyou Yu","doi":"10.1016/j.ijantimicag.2024.107411","DOIUrl":null,"url":null,"abstract":"<p><p>With the widespread clinical use of ceftazidime-avibactam (CZA), reports of resistance have increased continuously, posing immense threats to public health worldwide. In this study, we explored the underlying mechanisms leading to the development of CZA resistance in an ST11-KL64 hypervirulent Klebsiella pneumoniae CRE146 that harbored the bla<sub>KPC-228</sub> gene. Twelve carbapenem-resistant Klebsiella pneumoniae (CRKP) strains were isolated from the same patient, including K. pneumoniae CRE146. Whole genome sequencing (WGS), phylogenetic analysis, bla<sub>KPC</sub> gene cloning and pACYC-KPC construction assays were conducted to further explore the molecular mechanisms of CZA resistance. Quantitative siderophore production assay, string test, capsule quantification and Galleria mellonella in vivo infection model were applied to verify the level of pathogenicity of K. pneumoniae CRE146. This strain carried key virulence factors, iutA-iucABCD operon and rmpA gene. Compared to the wild-type KPC-2 carbapenemase, the novel KPC-228 enzyme exhibited a deletion of four amino acids in the Ω-loop (del_167-170_ELNS). In addition, the emergence of CZA resistance appeared to be associated with drug exposure, and we observed the in vivo evolution of wild-type KPC-2 to KPC-228 and then the reversion to its original wild-type KPC-2. The bla<sub>KPC-228</sub> gene was located within the double IS26 flanking the ISKpn6-bla<sub>KPC-228</sub>-ISKpn27 core structure and carried on an IncFII/IncR-type plasmid. Notably, CRE146 exhibited high-level resistance to CZA (64/4 mg/L) but increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L) respectively. PACYC-KPC plasmids were constructed and expressed in K. pneumoniae ATCC13883. Compared to K. pneumoniae ATCC13883 harboring bla<sub>KPC-2</sub>, K. pneumoniae ATCC13883 harboring bla<sub>KPC-228</sub> exhibited a high-level resistance to CZA (32/4 mg/L) and increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L). Interestingly, K. pneumoniae ATCC13883 harboring bla<sub>KPC-228</sub> showed a significant decrease in their resistance to all β-lactamases tested except CZA and ceftazidime. In conclusion, we reported a novel KPC variant, KPC-228, in a clinical ST11-KL64 hypervirulent K. pneumoniae strain, which conferred CZA resistance, possibly through enhancing ceftazidime affinity and reducing avibactam binding. The bla<sub>KPC-228</sub> can mutate back to bla<sub>KPC-2</sub> under carbapenem pressure, which was very detrimental to clinical treatment. This strain carried both resistance and virulence genes, posing a major challenge in clinical management.</p>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":" ","pages":"107411"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijantimicag.2024.107411","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread clinical use of ceftazidime-avibactam (CZA), reports of resistance have increased continuously, posing immense threats to public health worldwide. In this study, we explored the underlying mechanisms leading to the development of CZA resistance in an ST11-KL64 hypervirulent Klebsiella pneumoniae CRE146 that harbored the blaKPC-228 gene. Twelve carbapenem-resistant Klebsiella pneumoniae (CRKP) strains were isolated from the same patient, including K. pneumoniae CRE146. Whole genome sequencing (WGS), phylogenetic analysis, blaKPC gene cloning and pACYC-KPC construction assays were conducted to further explore the molecular mechanisms of CZA resistance. Quantitative siderophore production assay, string test, capsule quantification and Galleria mellonella in vivo infection model were applied to verify the level of pathogenicity of K. pneumoniae CRE146. This strain carried key virulence factors, iutA-iucABCD operon and rmpA gene. Compared to the wild-type KPC-2 carbapenemase, the novel KPC-228 enzyme exhibited a deletion of four amino acids in the Ω-loop (del_167-170_ELNS). In addition, the emergence of CZA resistance appeared to be associated with drug exposure, and we observed the in vivo evolution of wild-type KPC-2 to KPC-228 and then the reversion to its original wild-type KPC-2. The blaKPC-228 gene was located within the double IS26 flanking the ISKpn6-blaKPC-228-ISKpn27 core structure and carried on an IncFII/IncR-type plasmid. Notably, CRE146 exhibited high-level resistance to CZA (64/4 mg/L) but increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L) respectively. PACYC-KPC plasmids were constructed and expressed in K. pneumoniae ATCC13883. Compared to K. pneumoniae ATCC13883 harboring blaKPC-2, K. pneumoniae ATCC13883 harboring blaKPC-228 exhibited a high-level resistance to CZA (32/4 mg/L) and increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L). Interestingly, K. pneumoniae ATCC13883 harboring blaKPC-228 showed a significant decrease in their resistance to all β-lactamases tested except CZA and ceftazidime. In conclusion, we reported a novel KPC variant, KPC-228, in a clinical ST11-KL64 hypervirulent K. pneumoniae strain, which conferred CZA resistance, possibly through enhancing ceftazidime affinity and reducing avibactam binding. The blaKPC-228 can mutate back to blaKPC-2 under carbapenem pressure, which was very detrimental to clinical treatment. This strain carried both resistance and virulence genes, posing a major challenge in clinical management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
21.60
自引率
0.90%
发文量
176
审稿时长
36 days
期刊介绍: The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信