Exploring the effects of probiotics on olanzapine-induced metabolic syndrome through the gut microbiota.

IF 4.3 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
Syed Mushraf, Kiran Chawla, Shaik Mohammed Abdul Fayaz, Aranjani Jesil Mathew, Gayam Prasanna Kumar Reddy, Mohandas Rao Kappettu Gadahad, Padmaja A Shenoy, Vasudha Devi, Shalini Adiga, Veena Nayak
{"title":"Exploring the effects of probiotics on olanzapine-induced metabolic syndrome through the gut microbiota.","authors":"Syed Mushraf, Kiran Chawla, Shaik Mohammed Abdul Fayaz, Aranjani Jesil Mathew, Gayam Prasanna Kumar Reddy, Mohandas Rao Kappettu Gadahad, Padmaja A Shenoy, Vasudha Devi, Shalini Adiga, Veena Nayak","doi":"10.1186/s13099-024-00664-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Maintaining gut microbial homeostasis is crucial for human health, as imbalances in the gut microbiota (GM) can lead to various diseases, including metabolic syndrome (MS), exacerbated by the use of antipsychotic medications such as olanzapine (OLZ). Understanding the role of the GM in OLZ-induced MS could lead to new therapeutic strategies. This study used metagenomic analysis to explore the impact of OLZ on the GM composition and examined how probiotics can mitigate its adverse effects in a rat model. Changes in weight, blood pressure, and lipid levels, which are key parameters defining MS, were assessed. Additionally, this study investigated serotonin, dopamine, and histopathological changes to explore their possible link with the microbiota-gut-brain axis (MGBA).</p><p><strong>Results: </strong>OLZ had an antagonistic effect on serotonin and dopamine receptors, and it was consistently found to alter the composition of the GM, with an increase in the relative abundance (RA) of the Firmicutes/Bacteroidetes phyla ratio and TM7 genera, indicating that the anticommonsal action of OLZ affects appetite and energy expenditure, contributing to obesity, dyslipidemia and increased blood pressure, which are core components of MS. Hepatic steatosis and intestinal damage in OLZ-treated rat tissues further indicate its role in MS. Conversely, the administration of probiotics, either alone or in combination with OLZ, was found to mitigate these OLZ-induced symptoms of MS by altering the GM composition. These alterations included increases in the abundances of the taxa Bacteroidetes, Actinobacteria, Prevotella, Blautia, Bacteroides, Bacteroidales, and Ruminococcaceae and a decrease in Firmicute abundance. These changes helped maintain gut barrier integrity and modulated neurotransmitter levels, suggesting that probiotics can counteract the adverse metabolic effects of OLZ by restoring the GM balance. Moreover, this study highlights the modulation of the MGBA by OLZ as a potential mechanism through which probiotics modulate serotonin and dopamine levels, influencing metabolic health.</p><p><strong>Conclusion: </strong>These findings emphasise the significant impact of OLZ on the GM and its contribution to MS. These findings suggest that interventions targeting the GM, such as probiotics, could mitigate the metabolic side effects of OLZ. Future research should focus on developing integrative treatment approaches that consider the health of the gut microbiome in managing antipsychotic-induced adverse effects.</p>","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":"16 1","pages":"77"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-024-00664-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Maintaining gut microbial homeostasis is crucial for human health, as imbalances in the gut microbiota (GM) can lead to various diseases, including metabolic syndrome (MS), exacerbated by the use of antipsychotic medications such as olanzapine (OLZ). Understanding the role of the GM in OLZ-induced MS could lead to new therapeutic strategies. This study used metagenomic analysis to explore the impact of OLZ on the GM composition and examined how probiotics can mitigate its adverse effects in a rat model. Changes in weight, blood pressure, and lipid levels, which are key parameters defining MS, were assessed. Additionally, this study investigated serotonin, dopamine, and histopathological changes to explore their possible link with the microbiota-gut-brain axis (MGBA).

Results: OLZ had an antagonistic effect on serotonin and dopamine receptors, and it was consistently found to alter the composition of the GM, with an increase in the relative abundance (RA) of the Firmicutes/Bacteroidetes phyla ratio and TM7 genera, indicating that the anticommonsal action of OLZ affects appetite and energy expenditure, contributing to obesity, dyslipidemia and increased blood pressure, which are core components of MS. Hepatic steatosis and intestinal damage in OLZ-treated rat tissues further indicate its role in MS. Conversely, the administration of probiotics, either alone or in combination with OLZ, was found to mitigate these OLZ-induced symptoms of MS by altering the GM composition. These alterations included increases in the abundances of the taxa Bacteroidetes, Actinobacteria, Prevotella, Blautia, Bacteroides, Bacteroidales, and Ruminococcaceae and a decrease in Firmicute abundance. These changes helped maintain gut barrier integrity and modulated neurotransmitter levels, suggesting that probiotics can counteract the adverse metabolic effects of OLZ by restoring the GM balance. Moreover, this study highlights the modulation of the MGBA by OLZ as a potential mechanism through which probiotics modulate serotonin and dopamine levels, influencing metabolic health.

Conclusion: These findings emphasise the significant impact of OLZ on the GM and its contribution to MS. These findings suggest that interventions targeting the GM, such as probiotics, could mitigate the metabolic side effects of OLZ. Future research should focus on developing integrative treatment approaches that consider the health of the gut microbiome in managing antipsychotic-induced adverse effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gut Pathogens
Gut Pathogens GASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍: Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology. Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信