Justin T Tretter, Francisco Bedogni, Josep Rodés-Cabau, Ander Regueiro, Luca Testa, Mackram F Eleid, Shmuel Chen, Attilio Galhardo, Kenneth A Ellenbogen, Martin B Leon, Shlomo Ben-Haim
{"title":"Novel cardiac CT method for identifying the atrioventricular conduction axis by anatomic landmarks.","authors":"Justin T Tretter, Francisco Bedogni, Josep Rodés-Cabau, Ander Regueiro, Luca Testa, Mackram F Eleid, Shmuel Chen, Attilio Galhardo, Kenneth A Ellenbogen, Martin B Leon, Shlomo Ben-Haim","doi":"10.1016/j.hrthm.2024.12.022","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding the conduction axis location aids in avoiding iatrogenic damage and guiding targeted heart rhythm therapy.</p><p><strong>Objective: </strong>Cardiac structures visible with clinical imaging have been demonstrated to correlate with variability in the conduction system course. We aimed to standardize and assess the reproducibility of predicting the location of the atrioventricular conduction axis by cardiac computed tomography.</p><p><strong>Methods: </strong>We evaluated 477 patients with acquired aortic valve disease by cardiac computed tomography to assess variability in cardiac structures established to relate to the conduction system. We standardized 3 points (points A-C) to estimate the course from the atrioventricular node to the nonbranching bundle and left bundle branch origin and further compared this with measures of variability in the aortic root and membranous septum.</p><p><strong>Results: </strong>The mean distances between the aortic valve virtual basal ring and points A, B, and C were 9.5 ± 3.5 (0.3-20.1) mm, 5.0 ± 2.6 (-1.7 to 15.9) mm, and 2.8 ± 2.4 (-5.2 to 12.0) mm, respectively. The midpoint of the membranous septum deviated posteriorly a median of -4.4 (interquartile range, -12.4 to +3.0) degrees relative to the commissure between the right coronary and noncoronary leaflets. Intraclass coefficients for both intraobserver and interobserver variability for all measured points were excellent (≥0.78).</p><p><strong>Conclusion: </strong>These findings further infer the intimate yet highly variable relationship between the conduction axis and aortic root. This reproducible and standardized approach needs validation in populations of patients, requiring accurate identification of the atrioventricular components of the conduction axis, which may serve as a noninvasive means for estimating its location.</p>","PeriodicalId":12886,"journal":{"name":"Heart rhythm","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heart rhythm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.hrthm.2024.12.022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Understanding the conduction axis location aids in avoiding iatrogenic damage and guiding targeted heart rhythm therapy.
Objective: Cardiac structures visible with clinical imaging have been demonstrated to correlate with variability in the conduction system course. We aimed to standardize and assess the reproducibility of predicting the location of the atrioventricular conduction axis by cardiac computed tomography.
Methods: We evaluated 477 patients with acquired aortic valve disease by cardiac computed tomography to assess variability in cardiac structures established to relate to the conduction system. We standardized 3 points (points A-C) to estimate the course from the atrioventricular node to the nonbranching bundle and left bundle branch origin and further compared this with measures of variability in the aortic root and membranous septum.
Results: The mean distances between the aortic valve virtual basal ring and points A, B, and C were 9.5 ± 3.5 (0.3-20.1) mm, 5.0 ± 2.6 (-1.7 to 15.9) mm, and 2.8 ± 2.4 (-5.2 to 12.0) mm, respectively. The midpoint of the membranous septum deviated posteriorly a median of -4.4 (interquartile range, -12.4 to +3.0) degrees relative to the commissure between the right coronary and noncoronary leaflets. Intraclass coefficients for both intraobserver and interobserver variability for all measured points were excellent (≥0.78).
Conclusion: These findings further infer the intimate yet highly variable relationship between the conduction axis and aortic root. This reproducible and standardized approach needs validation in populations of patients, requiring accurate identification of the atrioventricular components of the conduction axis, which may serve as a noninvasive means for estimating its location.
期刊介绍:
HeartRhythm, the official Journal of the Heart Rhythm Society and the Cardiac Electrophysiology Society, is a unique journal for fundamental discovery and clinical applicability.
HeartRhythm integrates the entire cardiac electrophysiology (EP) community from basic and clinical academic researchers, private practitioners, engineers, allied professionals, industry, and trainees, all of whom are vital and interdependent members of our EP community.
The Heart Rhythm Society is the international leader in science, education, and advocacy for cardiac arrhythmia professionals and patients, and the primary information resource on heart rhythm disorders. Its mission is to improve the care of patients by promoting research, education, and optimal health care policies and standards.