The Effect of Heat-treated Poultry Pellets and Composted Poultry Litter on E. coli Survival in Southeastern US Soils: Florida and Georgia.

IF 2.1 4区 农林科学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Karuna Kharel, Cameron A Bardsley, Charles Bency Appolon, Laurel L Dunn, Govindaraj Dev Kumar, Krishna Prabha, Manan Sharma, Michelle D Danyluk, Keith R Schneider
{"title":"The Effect of Heat-treated Poultry Pellets and Composted Poultry Litter on E. coli Survival in Southeastern US Soils: Florida and Georgia.","authors":"Karuna Kharel, Cameron A Bardsley, Charles Bency Appolon, Laurel L Dunn, Govindaraj Dev Kumar, Krishna Prabha, Manan Sharma, Michelle D Danyluk, Keith R Schneider","doi":"10.1016/j.jfp.2024.100439","DOIUrl":null,"url":null,"abstract":"<p><p>Biological soil amendments of animal origin (BSAAO) are a source of foodborne pathogens that can contaminate fresh produce. This study evaluated the survival of E. coli over 140 d in agricultural soils amended with composted poultry litter (PL), heat-treated poultry pellets (HTPP), or unamended (UN) in Florida (FL) and Georgia (GA). Raised-bed plots (1 x 3 m<sup>2</sup>; n=3) were either left unamended (UN) or amended with PL or HTPP (680 g/plot). Each plot was spray-inoculated with 1 L of rifampicin-resistant E.coli (7-8 log CFU/mL) and hand-tilled into the soil (∼5.9 and 4.5 log CFU/g for FL and GA, respectively). Soil samples were enumerated using a spread plate or most probable number technique at 0, 1, 3, 7, 14, 28, 56, 84, 112, and 140 d. Weather-related parameters were collected to assess their impact on E. coli survival. A mixed-model analysis was used to evaluate factors influencing E. coli survival, a biphasic model was used for the E. coli die-off rate, and Spearman correlations were used to understand the associations between environmental factors and survival. Time, amendment type and location*treatment*time influenced (P < 0.05) the survival of E. coli in soil. In FL, HTPP-amended soils supported higher levels of E. coli compared to PL-amended soils; in Georgia, similar survival was observed between PL- and HTPP-amended soils, both of which were higher (P < 0.05) than in UN soils. In both locations, E. coli levels fell to the limit of detection (-0.24 log MPN/g) by 112 d in UN plots; however, they persisted at levels between 0.30-1.57 log CFU/g in HTTP- and PL-amended soils until 140 d. Weak to moderate correlations were observed for rainfall and soil moisture and their effect on E. coli survival; no other weather factors were impactful. The use of BSAAO in soils can prolong the survival of E. coli (>140 d) irrespective of the factors intrinsic to the locations and have implications regarding the safe use of BSAAOs during fruit and vegetable production.</p>","PeriodicalId":15903,"journal":{"name":"Journal of food protection","volume":" ","pages":"100439"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of food protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jfp.2024.100439","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biological soil amendments of animal origin (BSAAO) are a source of foodborne pathogens that can contaminate fresh produce. This study evaluated the survival of E. coli over 140 d in agricultural soils amended with composted poultry litter (PL), heat-treated poultry pellets (HTPP), or unamended (UN) in Florida (FL) and Georgia (GA). Raised-bed plots (1 x 3 m2; n=3) were either left unamended (UN) or amended with PL or HTPP (680 g/plot). Each plot was spray-inoculated with 1 L of rifampicin-resistant E.coli (7-8 log CFU/mL) and hand-tilled into the soil (∼5.9 and 4.5 log CFU/g for FL and GA, respectively). Soil samples were enumerated using a spread plate or most probable number technique at 0, 1, 3, 7, 14, 28, 56, 84, 112, and 140 d. Weather-related parameters were collected to assess their impact on E. coli survival. A mixed-model analysis was used to evaluate factors influencing E. coli survival, a biphasic model was used for the E. coli die-off rate, and Spearman correlations were used to understand the associations between environmental factors and survival. Time, amendment type and location*treatment*time influenced (P < 0.05) the survival of E. coli in soil. In FL, HTPP-amended soils supported higher levels of E. coli compared to PL-amended soils; in Georgia, similar survival was observed between PL- and HTPP-amended soils, both of which were higher (P < 0.05) than in UN soils. In both locations, E. coli levels fell to the limit of detection (-0.24 log MPN/g) by 112 d in UN plots; however, they persisted at levels between 0.30-1.57 log CFU/g in HTTP- and PL-amended soils until 140 d. Weak to moderate correlations were observed for rainfall and soil moisture and their effect on E. coli survival; no other weather factors were impactful. The use of BSAAO in soils can prolong the survival of E. coli (>140 d) irrespective of the factors intrinsic to the locations and have implications regarding the safe use of BSAAOs during fruit and vegetable production.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of food protection
Journal of food protection 工程技术-生物工程与应用微生物
CiteScore
4.20
自引率
5.00%
发文量
296
审稿时长
2.5 months
期刊介绍: The Journal of Food Protection® (JFP) is an international, monthly scientific journal in the English language published by the International Association for Food Protection (IAFP). JFP publishes research and review articles on all aspects of food protection and safety. Major emphases of JFP are placed on studies dealing with: Tracking, detecting (including traditional, molecular, and real-time), inactivating, and controlling food-related hazards, including microorganisms (including antibiotic resistance), microbial (mycotoxins, seafood toxins) and non-microbial toxins (heavy metals, pesticides, veterinary drug residues, migrants from food packaging, and processing contaminants), allergens and pests (insects, rodents) in human food, pet food and animal feed throughout the food chain; Microbiological food quality and traditional/novel methods to assay microbiological food quality; Prevention of food-related hazards and food spoilage through food preservatives and thermal/non-thermal processes, including process validation; Food fermentations and food-related probiotics; Safe food handling practices during pre-harvest, harvest, post-harvest, distribution and consumption, including food safety education for retailers, foodservice, and consumers; Risk assessments for food-related hazards; Economic impact of food-related hazards, foodborne illness, food loss, food spoilage, and adulterated foods; Food fraud, food authentication, food defense, and foodborne disease outbreak investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信