Second- and third-degree kinship analysis by NGS-based SNP genotyping and evaluation of 2045-SNP performance on limited or degraded DNA.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL
Masaru Asari, Yuta Takahashi, Ryo Namba, Chisato Hoshina, Kanae Mori, Katsuhiro Okuda, Keiko Shimizu
{"title":"Second- and third-degree kinship analysis by NGS-based SNP genotyping and evaluation of 2045-SNP performance on limited or degraded DNA.","authors":"Masaru Asari, Yuta Takahashi, Ryo Namba, Chisato Hoshina, Kanae Mori, Katsuhiro Okuda, Keiko Shimizu","doi":"10.1016/j.forsciint.2024.112346","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a novel next-generation sequencing-based single-nucleotide polymorphism (SNP) genotyping method for second- and third-degree kinship analysis, and designed 1144- and 2045-SNP panels using one (Set A) and two sets (Sets A and B) of primers. These SNP loci were analyzed in 120 Japanese individuals, and likelihood ratios (LRs) for kinship discrimination were calculated to evaluate the effect of number of SNP loci in simulated analysis. Likelihood evaluation was performed using DNA profiles from two individuals, namely, the unknown and one reference relative. Genotyping of the 1144 and 2045 SNPs was informative to discriminate aunt-nephew/niece as second-degree relatives and unrelated pairs. In third-degree relationship analysis, distributions of log<sub>10</sub>LRs between the unknown and a first cousin (FC) were not separated from those of unrelated individuals even in 2045-SNP genotyping. To perform enhanced discrimination of third-degree relationships, we also evaluated the effectiveness of DNA profiles from three individuals, namely, the unknown and two first cousins (2FC). A likelihood evaluation from the 2045 SNPs using 2FC was more useful than the use of FC. Our method was applied to 12 kinship cases for second- and third-degree relationship analysis, and LRs from 1144- and 2045-SNP genotypes were markedly higher than those from conventional short tandem repeat profiles. Moreover, we evaluated the performance of the 2045 SNPs using limited or degraded DNA, compared with that with a larger amount of DNA. Using 0.1 ng of non-degraded DNA, the average concordance was higher than 97 %. In analysis with heavily degraded DNA (degradation index=32.2), we also detected high concordance (85.5 %) from 2045-SNP genotypes, compared with the lower rate (52.4 %) from 21 short tandem repeat profiles. Our method should be highly sensitive with discriminatory DNA profiles for analyzing second- and third-degree relationships.</p>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":"367 ","pages":"112346"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.forsciint.2024.112346","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a novel next-generation sequencing-based single-nucleotide polymorphism (SNP) genotyping method for second- and third-degree kinship analysis, and designed 1144- and 2045-SNP panels using one (Set A) and two sets (Sets A and B) of primers. These SNP loci were analyzed in 120 Japanese individuals, and likelihood ratios (LRs) for kinship discrimination were calculated to evaluate the effect of number of SNP loci in simulated analysis. Likelihood evaluation was performed using DNA profiles from two individuals, namely, the unknown and one reference relative. Genotyping of the 1144 and 2045 SNPs was informative to discriminate aunt-nephew/niece as second-degree relatives and unrelated pairs. In third-degree relationship analysis, distributions of log10LRs between the unknown and a first cousin (FC) were not separated from those of unrelated individuals even in 2045-SNP genotyping. To perform enhanced discrimination of third-degree relationships, we also evaluated the effectiveness of DNA profiles from three individuals, namely, the unknown and two first cousins (2FC). A likelihood evaluation from the 2045 SNPs using 2FC was more useful than the use of FC. Our method was applied to 12 kinship cases for second- and third-degree relationship analysis, and LRs from 1144- and 2045-SNP genotypes were markedly higher than those from conventional short tandem repeat profiles. Moreover, we evaluated the performance of the 2045 SNPs using limited or degraded DNA, compared with that with a larger amount of DNA. Using 0.1 ng of non-degraded DNA, the average concordance was higher than 97 %. In analysis with heavily degraded DNA (degradation index=32.2), we also detected high concordance (85.5 %) from 2045-SNP genotypes, compared with the lower rate (52.4 %) from 21 short tandem repeat profiles. Our method should be highly sensitive with discriminatory DNA profiles for analyzing second- and third-degree relationships.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Forensic science international
Forensic science international 医学-医学:法
CiteScore
5.00
自引率
9.10%
发文量
285
审稿时长
49 days
期刊介绍: Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law. The journal publishes: Case Reports Commentaries Letters to the Editor Original Research Papers (Regular Papers) Rapid Communications Review Articles Technical Notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信