Mobilization of an ICEclc-Like Element as a Potential Mechanism for the Spread of IMP-13 Carbapenemase in Pseudomonas aeruginosa.

IF 3.7 3区 医学 Q2 INFECTIOUS DISEASES
Léa Bientz, Ulysse Guyet, Jennifer Guiraud, Mathieu Metifiot, Mikeldi Moulieras, Sabine Aillerie, Laure Coulange-Mayonnove, Bachir Boureima-Abdou, Alexis Groppi, Macha Nikolski, Cécile Bébéar, Sabine Pereyre, Véronique Dubois
{"title":"Mobilization of an ICEclc-Like Element as a Potential Mechanism for the Spread of IMP-13 Carbapenemase in Pseudomonas aeruginosa.","authors":"Léa Bientz, Ulysse Guyet, Jennifer Guiraud, Mathieu Metifiot, Mikeldi Moulieras, Sabine Aillerie, Laure Coulange-Mayonnove, Bachir Boureima-Abdou, Alexis Groppi, Macha Nikolski, Cécile Bébéar, Sabine Pereyre, Véronique Dubois","doi":"10.1016/j.jgar.2024.12.006","DOIUrl":null,"url":null,"abstract":"<p><p>Carbapenem-resistant Pseudomonas aeruginosa is a global public health concern. IMP-13 is a carbapenemase that was described for the first time in 2001 but is often underestimated due to poor hydrolysis of carbapenems and a lack of molecular detection. The aim of this study was to characterize the genetic support of bla<sub>IMP-13</sub> in P. aeruginosa and to assess the ability of mobile genetic elements to disseminate this resistance. A retrospective analysis conducted between 2010 and 2020 revealed eight multiresistant P. aeruginosa isolates by their production of the carbapenemase IMP-13 in Bordeaux. Additionally, three of the studied isolates exhibited high-level resistance to imipenem and imipenem-relebactam that was linked to an insertion sequence in the oprD gene. Successful mating was achieved, and transconjugants and parental clinical isolate genomes were sequenced. All clinical isolates were found to be ST621 strains. The data revealed that bla<sub>IMP-13</sub> was carried on an Integrative and Conjugative Element (ICEclc-like) of 88,589 bp with a 62% GC content harboring 85 CDSs, and was inserted at the tRNA<sup>Gly</sup> locus PA0729.1. The ICE was identical in the eight studied clinical isolates and in all the ST621 strains found in the databases. The conjugation rate was low, at approximately 10<sup>-8</sup> transconjugants per donor and ICE transfer appeared to mobilize some adjacent parental genes located immediately downstream of the ICE. In conclusion, these results suggest that even if the spread of bla<sub>IMP-13</sub> is mainly due to an epidemic ST621 clone, the mobilization of a bla<sub>IMP-13</sub>-carrying ICEclc-like element is possible and should not be underestimated.</p>","PeriodicalId":15936,"journal":{"name":"Journal of global antimicrobial resistance","volume":" ","pages":"44-51"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global antimicrobial resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jgar.2024.12.006","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Carbapenem-resistant Pseudomonas aeruginosa is a global public health concern. IMP-13 is a carbapenemase that was described for the first time in 2001 but is often underestimated due to poor hydrolysis of carbapenems and a lack of molecular detection. The aim of this study was to characterize the genetic support of blaIMP-13 in P. aeruginosa and to assess the ability of mobile genetic elements to disseminate this resistance. A retrospective analysis conducted between 2010 and 2020 revealed eight multiresistant P. aeruginosa isolates by their production of the carbapenemase IMP-13 in Bordeaux. Additionally, three of the studied isolates exhibited high-level resistance to imipenem and imipenem-relebactam that was linked to an insertion sequence in the oprD gene. Successful mating was achieved, and transconjugants and parental clinical isolate genomes were sequenced. All clinical isolates were found to be ST621 strains. The data revealed that blaIMP-13 was carried on an Integrative and Conjugative Element (ICEclc-like) of 88,589 bp with a 62% GC content harboring 85 CDSs, and was inserted at the tRNAGly locus PA0729.1. The ICE was identical in the eight studied clinical isolates and in all the ST621 strains found in the databases. The conjugation rate was low, at approximately 10-8 transconjugants per donor and ICE transfer appeared to mobilize some adjacent parental genes located immediately downstream of the ICE. In conclusion, these results suggest that even if the spread of blaIMP-13 is mainly due to an epidemic ST621 clone, the mobilization of a blaIMP-13-carrying ICEclc-like element is possible and should not be underestimated.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of global antimicrobial resistance
Journal of global antimicrobial resistance INFECTIOUS DISEASES-PHARMACOLOGY & PHARMACY
CiteScore
8.70
自引率
2.20%
发文量
285
审稿时长
34 weeks
期刊介绍: The Journal of Global Antimicrobial Resistance (JGAR) is a quarterly online journal run by an international Editorial Board that focuses on the global spread of antibiotic-resistant microbes. JGAR is a dedicated journal for all professionals working in research, health care, the environment and animal infection control, aiming to track the resistance threat worldwide and provides a single voice devoted to antimicrobial resistance (AMR). Featuring peer-reviewed and up to date research articles, reviews, short notes and hot topics JGAR covers the key topics related to antibacterial, antiviral, antifungal and antiparasitic resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信