Daniil Lisik, Rani Basna, Tai Dinh, Christian Hennig, Syed Ahmar Shah, Göran Wennergren, Emma Goksör, Bright I Nwaru
{"title":"Artificial intelligence in pediatric allergy research.","authors":"Daniil Lisik, Rani Basna, Tai Dinh, Christian Hennig, Syed Ahmar Shah, Göran Wennergren, Emma Goksör, Bright I Nwaru","doi":"10.1007/s00431-024-05925-5","DOIUrl":null,"url":null,"abstract":"<p><p>Atopic dermatitis, food allergy, allergic rhinitis, and asthma are among the most common diseases in childhood. They are heterogeneous diseases, can co-exist in their development, and manifest complex associations with other disorders and environmental and hereditary factors. Elucidating these intricacies by identifying clinically distinguishable groups and actionable risk factors will allow for better understanding of the diseases, which will enhance clinical management and benefit society and affected individuals and families. Artificial intelligence (AI) is a promising tool in this context, enabling discovery of meaningful patterns in complex data. Numerous studies within pediatric allergy have and continue to use AI, primarily to characterize disease endotypes/phenotypes and to develop models to predict future disease outcomes. However, most implementations have used relatively simplistic data from one source, such as questionnaires. In addition, methodological approaches and reporting are lacking. This review provides a practical hands-on guide for conducting AI-based studies in pediatric allergy, including (1) an introduction to essential AI concepts and techniques, (2) a blueprint for structuring analysis pipelines (from selection of variables to interpretation of results), and (3) an overview of common pitfalls and remedies. Furthermore, the state-of-the art in the implementation of AI in pediatric allergy research, as well as implications and future perspectives are discussed.</p><p><strong>Conclusion: </strong>AI-based solutions will undoubtedly transform pediatric allergy research, as showcased by promising findings and innovative technical solutions, but to fully harness the potential, methodologically robust implementation of more advanced techniques on richer data will be needed.</p><p><strong>What is known: </strong>• Pediatric allergies are heterogeneous and common, inflicting substantial morbidity and societal costs. • The field of artificial intelligence is undergoing rapid development, with increasing implementation in various fields of medicine and research.</p><p><strong>What is new: </strong>• Promising applications of AI in pediatric allergy have been reported, but implementation largely lags behind other fields, particularly in regard to use of advanced algorithms and non-tabular data. Furthermore, lacking reporting on computational approaches hampers evidence synthesis and critical appraisal. • Multi-center collaborations with multi-omics and rich unstructured data as well as utilization of deep learning algorithms are lacking and will likely provide the most impactful discoveries.</p>","PeriodicalId":11997,"journal":{"name":"European Journal of Pediatrics","volume":"184 1","pages":"98"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00431-024-05925-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Atopic dermatitis, food allergy, allergic rhinitis, and asthma are among the most common diseases in childhood. They are heterogeneous diseases, can co-exist in their development, and manifest complex associations with other disorders and environmental and hereditary factors. Elucidating these intricacies by identifying clinically distinguishable groups and actionable risk factors will allow for better understanding of the diseases, which will enhance clinical management and benefit society and affected individuals and families. Artificial intelligence (AI) is a promising tool in this context, enabling discovery of meaningful patterns in complex data. Numerous studies within pediatric allergy have and continue to use AI, primarily to characterize disease endotypes/phenotypes and to develop models to predict future disease outcomes. However, most implementations have used relatively simplistic data from one source, such as questionnaires. In addition, methodological approaches and reporting are lacking. This review provides a practical hands-on guide for conducting AI-based studies in pediatric allergy, including (1) an introduction to essential AI concepts and techniques, (2) a blueprint for structuring analysis pipelines (from selection of variables to interpretation of results), and (3) an overview of common pitfalls and remedies. Furthermore, the state-of-the art in the implementation of AI in pediatric allergy research, as well as implications and future perspectives are discussed.
Conclusion: AI-based solutions will undoubtedly transform pediatric allergy research, as showcased by promising findings and innovative technical solutions, but to fully harness the potential, methodologically robust implementation of more advanced techniques on richer data will be needed.
What is known: • Pediatric allergies are heterogeneous and common, inflicting substantial morbidity and societal costs. • The field of artificial intelligence is undergoing rapid development, with increasing implementation in various fields of medicine and research.
What is new: • Promising applications of AI in pediatric allergy have been reported, but implementation largely lags behind other fields, particularly in regard to use of advanced algorithms and non-tabular data. Furthermore, lacking reporting on computational approaches hampers evidence synthesis and critical appraisal. • Multi-center collaborations with multi-omics and rich unstructured data as well as utilization of deep learning algorithms are lacking and will likely provide the most impactful discoveries.
期刊介绍:
The European Journal of Pediatrics (EJPE) is a leading peer-reviewed medical journal which covers the entire field of pediatrics. The editors encourage authors to submit original articles, reviews, short communications, and correspondence on all relevant themes and topics.
EJPE is particularly committed to the publication of articles on important new clinical research that will have an immediate impact on clinical pediatric practice. The editorial office very much welcomes ideas for publications, whether individual articles or article series, that fit this goal and is always willing to address inquiries from authors regarding potential submissions. Invited review articles on clinical pediatrics that provide comprehensive coverage of a subject of importance are also regularly commissioned.
The short publication time reflects both the commitment of the editors and publishers and their passion for new developments in the field of pediatrics.
EJPE is active on social media (@EurJPediatrics) and we invite you to participate.
EJPE is the official journal of the European Academy of Paediatrics (EAP) and publishes guidelines and statements in cooperation with the EAP.