{"title":"LPA reduces the apoptosis of cryopreserved porcine skin-derived stem cells by inhibiting the regulatory factor TNF-α.","authors":"Xin-Xiang Xie, Jia-Dong Sun, Ming-Xin Zang, Geng Zhang, Chun-Xiao Li, Xiang-Wei Zhai, Wei Shen, Wei Ge, Shun-Feng Cheng","doi":"10.1016/j.cryobiol.2024.105189","DOIUrl":null,"url":null,"abstract":"<p><p>Preserving the viability and functionality of stem cells during cryopreservation is crucial for their successful application in regenerative medicine. The aim of this study is to investigate the effect of lysophosphatidic acid (LPA) on reducing the apoptosis of cryopreserved porcine skin-derived stem cells (pSDSCs). Our findings revealed that LPA, at a concentration of 5 μM, significantly improved viability and reduced apoptosis in cryopreserved pSDSCs. Furthermore, our data indicated that LPA enters pSDSCs through receptor type 1 (LPAR1). In cryopreserved pSDSCs, after LPA treatment, the expression level of tumor necrosis factor alpha (TNF-α) protein decreased, suggesting TNF-α involvement in the regulation of the anti-apoptotic process. Additionally, we found that resiquimod (R848), a TNF-α activator, increased the level of apoptosis in cryopreserved pSDSCs. When cryopreserved pSDSCs were treated with both LPA and R848, the protective effect of LPA against apoptosis was decreased. In conclusion, our study demonstrates that LPA could effectively counteract the effect of TNF-α-induced apoptosis, thereby enhancing the survival rates of cryopreserved pSDSCs. Importantly, this study explored a novel mechanism of reducing apoptosis in cryopreserved stem cells.</p>","PeriodicalId":10897,"journal":{"name":"Cryobiology","volume":" ","pages":"105189"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cryobiol.2024.105189","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Preserving the viability and functionality of stem cells during cryopreservation is crucial for their successful application in regenerative medicine. The aim of this study is to investigate the effect of lysophosphatidic acid (LPA) on reducing the apoptosis of cryopreserved porcine skin-derived stem cells (pSDSCs). Our findings revealed that LPA, at a concentration of 5 μM, significantly improved viability and reduced apoptosis in cryopreserved pSDSCs. Furthermore, our data indicated that LPA enters pSDSCs through receptor type 1 (LPAR1). In cryopreserved pSDSCs, after LPA treatment, the expression level of tumor necrosis factor alpha (TNF-α) protein decreased, suggesting TNF-α involvement in the regulation of the anti-apoptotic process. Additionally, we found that resiquimod (R848), a TNF-α activator, increased the level of apoptosis in cryopreserved pSDSCs. When cryopreserved pSDSCs were treated with both LPA and R848, the protective effect of LPA against apoptosis was decreased. In conclusion, our study demonstrates that LPA could effectively counteract the effect of TNF-α-induced apoptosis, thereby enhancing the survival rates of cryopreserved pSDSCs. Importantly, this study explored a novel mechanism of reducing apoptosis in cryopreserved stem cells.
期刊介绍:
Cryobiology: International Journal of Low Temperature Biology and Medicine publishes research articles on all aspects of low temperature biology and medicine.
Research Areas include:
• Cryoprotective additives and their pharmacological actions
• Cryosurgery
• Freeze-drying
• Freezing
• Frost hardiness in plants
• Hibernation
• Hypothermia
• Medical applications of reduced temperature
• Perfusion of organs
• All pertinent methodologies
Cryobiology is the official journal of the Society for Cryobiology.