{"title":"Accurate determination of motor evoked potential amplitude in TMS: The impact of personal and experimental factors.","authors":"Marten Nuyts, Stefanie Verstraelen, Joana Frieske, Raf Meesen, Sybren Van Hoornweder","doi":"10.1016/j.clinph.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Corticospinal excitability can be quantified using motor-evoked potentials (MEP) following transcranial magnetic stimulation (TMS). However, the inherent variability of MEPs poses significant challenges. We establish a framework using personal and experimental factors to select the optimal number of trials (n<sub>opt</sub>) required for reliable MEP estimates.</p><p><strong>Methods: </strong>47 healthy younger underwent single-pulse TMS over the left primary motor cortex (M1). Per participant, 550 MEPs were collected at intensities ranging from 110 % to 150 % of the resting motor threshold (rMT), in 10 % increments. Per intensity, we calculated n<sub>opt</sub>. We analyzed which personal and experimental factors affected n<sub>opt</sub>.</p><p><strong>Results: </strong>n<sub>opt</sub> decreased with increasing TMS intensity, lower rMT baseline values, and exclusion of single-trial outliers. Sex had no significant effect.</p><p><strong>Conclusions: </strong>Our study indicates that even when TMS is used as an outcome measure, custom-tailoring its protocol to study-related circumstances is key, as TMS intensity, outliers, baseline rMT, and the desired precision level affect the number of TMS trials needed to obtain a reliable MEP. Thus, we underscore the absence of a universal rule-of-thumb rule, although our predictive equations and online tool provide future TMS experimenters with the means to estimate the required number of TMS trials based on individual characteristics and specific experimental conditions.</p><p><strong>Significance: </strong>Our predictive equations offer a tailored approach for selecting n<sub>opt</sub>, enhancing the reliability of TMS-derived corticospinal excitability measurements.</p>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"170 ","pages":"123-131"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.clinph.2024.12.009","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Corticospinal excitability can be quantified using motor-evoked potentials (MEP) following transcranial magnetic stimulation (TMS). However, the inherent variability of MEPs poses significant challenges. We establish a framework using personal and experimental factors to select the optimal number of trials (nopt) required for reliable MEP estimates.
Methods: 47 healthy younger underwent single-pulse TMS over the left primary motor cortex (M1). Per participant, 550 MEPs were collected at intensities ranging from 110 % to 150 % of the resting motor threshold (rMT), in 10 % increments. Per intensity, we calculated nopt. We analyzed which personal and experimental factors affected nopt.
Results: nopt decreased with increasing TMS intensity, lower rMT baseline values, and exclusion of single-trial outliers. Sex had no significant effect.
Conclusions: Our study indicates that even when TMS is used as an outcome measure, custom-tailoring its protocol to study-related circumstances is key, as TMS intensity, outliers, baseline rMT, and the desired precision level affect the number of TMS trials needed to obtain a reliable MEP. Thus, we underscore the absence of a universal rule-of-thumb rule, although our predictive equations and online tool provide future TMS experimenters with the means to estimate the required number of TMS trials based on individual characteristics and specific experimental conditions.
Significance: Our predictive equations offer a tailored approach for selecting nopt, enhancing the reliability of TMS-derived corticospinal excitability measurements.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.