Michaela Cordova, Janice Hau, Adam Schadler, Molly Wilkinson, Kalekirstos Alemu, Ian Shryock, Ashley Baker, Chantal Chaaban, Emma Churchill, Inna Fishman, Ralph-Axel Müller, Ruth A Carper
{"title":"Structure of subcortico-cortical tracts in middle-aged and older adults with autism spectrum disorder.","authors":"Michaela Cordova, Janice Hau, Adam Schadler, Molly Wilkinson, Kalekirstos Alemu, Ian Shryock, Ashley Baker, Chantal Chaaban, Emma Churchill, Inna Fishman, Ralph-Axel Müller, Ruth A Carper","doi":"10.1093/cercor/bhae457","DOIUrl":null,"url":null,"abstract":"<p><p>Middle-aged and older adults with autism spectrum disorder may be susceptible to accelerated neurobiological changes in striato- and thalamo-cortical tracts due to combined effects of typical aging and existing disparities present from early neurodevelopment. Using magnetic resonance imaging, we employed diffusion-weighted imaging and automated tract-segmentation to explore striato- and thalamo-cortical tract microstructure and volume differences between autistic (n = 29) and typical comparison (n = 33) adults (40 to 70 years old). Fractional anisotropy, mean diffusivity, and tract volumes were measured for 14 striato-cortical and 12 thalamo-cortical tract bundles. Data were examined using linear regressions for group by age effects and group plus age effects, and false discovery rate correction was applied. Following false discovery rate correction, volumes of thalamocortical tracts to premotor, pericentral, and parietal regions were significantly reduced in autism spectrum disorder compared to thalamo-cortical groups, but no group by age interactions were found. Uncorrected results suggested additional main effects of group and age might be present for both tract volume and mean diffusivity across multiple subcortico-cortical tracts. Results indicate parallel rather than accelerated changes during adulthood in striato-cortical and thalamo-cortical tract volume and microstructure in those with autism spectrum disorder relative to thalamo-cortical peers though thalamo-cortical tract volume effects are the most reliable.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662352/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae457","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Middle-aged and older adults with autism spectrum disorder may be susceptible to accelerated neurobiological changes in striato- and thalamo-cortical tracts due to combined effects of typical aging and existing disparities present from early neurodevelopment. Using magnetic resonance imaging, we employed diffusion-weighted imaging and automated tract-segmentation to explore striato- and thalamo-cortical tract microstructure and volume differences between autistic (n = 29) and typical comparison (n = 33) adults (40 to 70 years old). Fractional anisotropy, mean diffusivity, and tract volumes were measured for 14 striato-cortical and 12 thalamo-cortical tract bundles. Data were examined using linear regressions for group by age effects and group plus age effects, and false discovery rate correction was applied. Following false discovery rate correction, volumes of thalamocortical tracts to premotor, pericentral, and parietal regions were significantly reduced in autism spectrum disorder compared to thalamo-cortical groups, but no group by age interactions were found. Uncorrected results suggested additional main effects of group and age might be present for both tract volume and mean diffusivity across multiple subcortico-cortical tracts. Results indicate parallel rather than accelerated changes during adulthood in striato-cortical and thalamo-cortical tract volume and microstructure in those with autism spectrum disorder relative to thalamo-cortical peers though thalamo-cortical tract volume effects are the most reliable.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.