Peiyang Li, Ruiting Lin, Weijie Huang, Hao Tang, Ke Liu, Nan Qiu, Peng Xu, Yin Tian, Cunbo Li
{"title":"Crucial rhythms and subnetworks for emotion processing extracted by an interpretable deep learning framework from EEG networks.","authors":"Peiyang Li, Ruiting Lin, Weijie Huang, Hao Tang, Ke Liu, Nan Qiu, Peng Xu, Yin Tian, Cunbo Li","doi":"10.1093/cercor/bhae477","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) brain networks describe the driving and synchronous relationships among multiple brain regions and can be used to identify different emotional states. However, methods for extracting interpretable structural features from brain networks are still lacking. In the current study, a novel deep learning structure comprising both an attention mechanism and a domain adversarial strategy is proposed to extract discriminant and interpretable features from brain networks. Specifically, the attention mechanism enhances the contribution of crucial rhythms and subnetworks for emotion recognition, whereas the domain-adversarial module improves the generalization performance of our proposed model for cross-subject tasks. We validated the effectiveness of the proposed method for subject-independent emotion recognition tasks with the SJTU Emotion EEG Dataset (SEED) and the EEGs recorded in our laboratory. The experimental results showed that the proposed method can effectively improve the classification accuracy of different emotions compared with commonly used methods such as domain adversarial neural networks. On the basis of the extracted network features, we also revealed crucial rhythms and subnetwork structures for emotion processing, which are consistent with those found in previous studies. Our proposed method not only improves the classification performance of brain networks but also provides a novel tool for revealing emotion processing mechanisms.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae477","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalogram (EEG) brain networks describe the driving and synchronous relationships among multiple brain regions and can be used to identify different emotional states. However, methods for extracting interpretable structural features from brain networks are still lacking. In the current study, a novel deep learning structure comprising both an attention mechanism and a domain adversarial strategy is proposed to extract discriminant and interpretable features from brain networks. Specifically, the attention mechanism enhances the contribution of crucial rhythms and subnetworks for emotion recognition, whereas the domain-adversarial module improves the generalization performance of our proposed model for cross-subject tasks. We validated the effectiveness of the proposed method for subject-independent emotion recognition tasks with the SJTU Emotion EEG Dataset (SEED) and the EEGs recorded in our laboratory. The experimental results showed that the proposed method can effectively improve the classification accuracy of different emotions compared with commonly used methods such as domain adversarial neural networks. On the basis of the extracted network features, we also revealed crucial rhythms and subnetwork structures for emotion processing, which are consistent with those found in previous studies. Our proposed method not only improves the classification performance of brain networks but also provides a novel tool for revealing emotion processing mechanisms.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.