Crucial rhythms and subnetworks for emotion processing extracted by an interpretable deep learning framework from EEG networks.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Peiyang Li, Ruiting Lin, Weijie Huang, Hao Tang, Ke Liu, Nan Qiu, Peng Xu, Yin Tian, Cunbo Li
{"title":"Crucial rhythms and subnetworks for emotion processing extracted by an interpretable deep learning framework from EEG networks.","authors":"Peiyang Li, Ruiting Lin, Weijie Huang, Hao Tang, Ke Liu, Nan Qiu, Peng Xu, Yin Tian, Cunbo Li","doi":"10.1093/cercor/bhae477","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) brain networks describe the driving and synchronous relationships among multiple brain regions and can be used to identify different emotional states. However, methods for extracting interpretable structural features from brain networks are still lacking. In the current study, a novel deep learning structure comprising both an attention mechanism and a domain adversarial strategy is proposed to extract discriminant and interpretable features from brain networks. Specifically, the attention mechanism enhances the contribution of crucial rhythms and subnetworks for emotion recognition, whereas the domain-adversarial module improves the generalization performance of our proposed model for cross-subject tasks. We validated the effectiveness of the proposed method for subject-independent emotion recognition tasks with the SJTU Emotion EEG Dataset (SEED) and the EEGs recorded in our laboratory. The experimental results showed that the proposed method can effectively improve the classification accuracy of different emotions compared with commonly used methods such as domain adversarial neural networks. On the basis of the extracted network features, we also revealed crucial rhythms and subnetwork structures for emotion processing, which are consistent with those found in previous studies. Our proposed method not only improves the classification performance of brain networks but also provides a novel tool for revealing emotion processing mechanisms.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae477","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalogram (EEG) brain networks describe the driving and synchronous relationships among multiple brain regions and can be used to identify different emotional states. However, methods for extracting interpretable structural features from brain networks are still lacking. In the current study, a novel deep learning structure comprising both an attention mechanism and a domain adversarial strategy is proposed to extract discriminant and interpretable features from brain networks. Specifically, the attention mechanism enhances the contribution of crucial rhythms and subnetworks for emotion recognition, whereas the domain-adversarial module improves the generalization performance of our proposed model for cross-subject tasks. We validated the effectiveness of the proposed method for subject-independent emotion recognition tasks with the SJTU Emotion EEG Dataset (SEED) and the EEGs recorded in our laboratory. The experimental results showed that the proposed method can effectively improve the classification accuracy of different emotions compared with commonly used methods such as domain adversarial neural networks. On the basis of the extracted network features, we also revealed crucial rhythms and subnetwork structures for emotion processing, which are consistent with those found in previous studies. Our proposed method not only improves the classification performance of brain networks but also provides a novel tool for revealing emotion processing mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信