Kriti Ahuja, Sharon Raju, Sakshi Dahiya, Rajender K Motiani
{"title":"ROS and calcium signaling are critical determinant of skin pigmentation.","authors":"Kriti Ahuja, Sharon Raju, Sakshi Dahiya, Rajender K Motiani","doi":"10.1016/j.ceca.2024.102987","DOIUrl":null,"url":null,"abstract":"<p><p>Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca<sup>2+</sup>) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca<sup>2+</sup> dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca<sup>2+</sup> signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca<sup>2+</sup> transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca<sup>2+</sup> handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca<sup>2+</sup> signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca<sup>2+</sup> signaling to human pigmentary disorders.</p>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"125 ","pages":"102987"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ceca.2024.102987","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca2+) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca2+ dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca2+ signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca2+ transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca2+ handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca2+ signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca2+ signaling to human pigmentary disorders.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes