Marjan Bahraminasab, Samira Asgharzade, Ali Doostmohamadi, Atefeh Satari, Farkhonde Hasannejad, Samaneh Arab
{"title":"Development of a hydrogel-based three-dimensional (3D) glioblastoma cell lines culture as a model system for CD73 inhibitor response study.","authors":"Marjan Bahraminasab, Samira Asgharzade, Ali Doostmohamadi, Atefeh Satari, Farkhonde Hasannejad, Samaneh Arab","doi":"10.1186/s12938-024-01320-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the development of various therapeutic approaches over the past decades, the treatment of glioblastoma multiforme (GBM) remains a major challenge. The extracellular adenosine-generating enzyme, CD73, is involved in the pathogenesis and progression of GBM, and targeting CD73 may represent a novel approach to treat this cancer. In this study, three-dimensional culture systems based on three hydrogel compositions were characterized and an optimal type was selected to simulate the GBM microenvironment. In addition, the effect of a CD73 inhibitor on GBM cell aggregates and spheroids was investigated as a potential therapeutic approach for this disease.</p><p><strong>Methods: </strong>Rheology measurements, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and cell proliferation assays were performed to analyze the synthesized hydrogel and select an optimal formulation. The viability of tumor cells in the optimal hydrogel was examined histologically and by confocal microscopy. In addition, the sensitivity of the tumor cells to the CD73 inhibitor was investigated using a cell proliferation assay and real-time PCR.</p><p><strong>Results: </strong>The data showed that the hydrogel containing 5 wt% gelatin and 5 wt% sodium alginate had better rheological properties and higher cell viability. Therefore, it could provide a more suitable environment for GBM cells and better mimic the natural microenvironment. GBM cells treated with CD73 inhibitors significantly decreased the proliferation rate and expression of VEGF and HIF1-α in the optimal hydrogel.</p><p><strong>Conclusion: </strong>Our current research demonstrates the great potential of CD73 inhibitor for clinical translation of cancer studies by analyzing the behavior and function of 3D tumor cells, and thus for more effective treatment protocols for GBM.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"127"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662813/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01320-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite the development of various therapeutic approaches over the past decades, the treatment of glioblastoma multiforme (GBM) remains a major challenge. The extracellular adenosine-generating enzyme, CD73, is involved in the pathogenesis and progression of GBM, and targeting CD73 may represent a novel approach to treat this cancer. In this study, three-dimensional culture systems based on three hydrogel compositions were characterized and an optimal type was selected to simulate the GBM microenvironment. In addition, the effect of a CD73 inhibitor on GBM cell aggregates and spheroids was investigated as a potential therapeutic approach for this disease.
Methods: Rheology measurements, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and cell proliferation assays were performed to analyze the synthesized hydrogel and select an optimal formulation. The viability of tumor cells in the optimal hydrogel was examined histologically and by confocal microscopy. In addition, the sensitivity of the tumor cells to the CD73 inhibitor was investigated using a cell proliferation assay and real-time PCR.
Results: The data showed that the hydrogel containing 5 wt% gelatin and 5 wt% sodium alginate had better rheological properties and higher cell viability. Therefore, it could provide a more suitable environment for GBM cells and better mimic the natural microenvironment. GBM cells treated with CD73 inhibitors significantly decreased the proliferation rate and expression of VEGF and HIF1-α in the optimal hydrogel.
Conclusion: Our current research demonstrates the great potential of CD73 inhibitor for clinical translation of cancer studies by analyzing the behavior and function of 3D tumor cells, and thus for more effective treatment protocols for GBM.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering