Jiajun Du, Junyu Xue, Xutong Tian, Juyue Luo, Ali Doğan Ömür, Jianying Yang, Yumeng Li
{"title":"Selenium-Enriched Aspergillus oryzae A02 Enhances Testicular Antioxidant Capacity in Mice by Regulating Intestinal Microbiota and Serum Metabolite.","authors":"Jiajun Du, Junyu Xue, Xutong Tian, Juyue Luo, Ali Doğan Ömür, Jianying Yang, Yumeng Li","doi":"10.1007/s12011-024-04496-8","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium (Se) is a trace element that is essential for health. Organic Se created by Se-enriched microorganisms has the characteristics of low toxicity, high bioavailability, and regulation of physiological functions. Here, the regulatory effect of Se-enriched Aspergillus oryzae A02 on the reproductive function of male mice and its potential molecular mechanism was studied. Specifically, twenty-four male mice were randomly divided into a control group and a Se-enriched A. oryzae A02 (Nano-Se) (daily gavage of 0.5 mg/kg, dissolved in saline) for an 8-week experiment. The results showed that Nano-Se intervention did not affect body weight and testicular index, but increased sperm concentration and seminiferous epithelium height in experimental mice, indicating that Nano-Se has the potential to improve the reproductive performance of male mice. Mechanistically, Nano-Se intervention increased the levels of antioxidant-related indicators catalase (CAT) and glutathione peroxidase (GSH-Px) in mouse serum, and increased the relative mRNA expression of GSH-Px, heme oxygenase-1 (HO-1), and NADPH quinine oxidoreductase-1 (NQO-1) in testicular tissues. We identified 9,10,13-trihydroxyoctadecenoic acids (TriHOMEs), stearidonic acid and selenomethionine linked with alpha-linolenic acid metabolism, selenocompound metabolism, folate biosynthesis, ubiquinone, and other terpenoid-quinone biosynthesis and biosynthesis of cofactors. In addition, Nano-Se did not influence the fecal bacterial alpha and beta diversity (P > 0.05), but increased the abundance of the Actinobacteriota and Proteobacteria phyla and the Staphylococcus and Corynebacterium genera, and lowered the abundance of the Bacteroidota phylum and the Lactobacillus and norank_f_Muribaculaceae genera. Nano-Se is considered a novel and promising nutritional regulator to improve reproductive function.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"4283-4295"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04496-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium (Se) is a trace element that is essential for health. Organic Se created by Se-enriched microorganisms has the characteristics of low toxicity, high bioavailability, and regulation of physiological functions. Here, the regulatory effect of Se-enriched Aspergillus oryzae A02 on the reproductive function of male mice and its potential molecular mechanism was studied. Specifically, twenty-four male mice were randomly divided into a control group and a Se-enriched A. oryzae A02 (Nano-Se) (daily gavage of 0.5 mg/kg, dissolved in saline) for an 8-week experiment. The results showed that Nano-Se intervention did not affect body weight and testicular index, but increased sperm concentration and seminiferous epithelium height in experimental mice, indicating that Nano-Se has the potential to improve the reproductive performance of male mice. Mechanistically, Nano-Se intervention increased the levels of antioxidant-related indicators catalase (CAT) and glutathione peroxidase (GSH-Px) in mouse serum, and increased the relative mRNA expression of GSH-Px, heme oxygenase-1 (HO-1), and NADPH quinine oxidoreductase-1 (NQO-1) in testicular tissues. We identified 9,10,13-trihydroxyoctadecenoic acids (TriHOMEs), stearidonic acid and selenomethionine linked with alpha-linolenic acid metabolism, selenocompound metabolism, folate biosynthesis, ubiquinone, and other terpenoid-quinone biosynthesis and biosynthesis of cofactors. In addition, Nano-Se did not influence the fecal bacterial alpha and beta diversity (P > 0.05), but increased the abundance of the Actinobacteriota and Proteobacteria phyla and the Staphylococcus and Corynebacterium genera, and lowered the abundance of the Bacteroidota phylum and the Lactobacillus and norank_f_Muribaculaceae genera. Nano-Se is considered a novel and promising nutritional regulator to improve reproductive function.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.