Predicting preterm birth using electronic medical records from multiple prenatal visits.

IF 2.8 2区 医学 Q1 OBSTETRICS & GYNECOLOGY
Chenyan Huang, Xi Long, Myrthe van der Ven, Maurits Kaptein, S Guid Oei, Edwin van den Heuvel
{"title":"Predicting preterm birth using electronic medical records from multiple prenatal visits.","authors":"Chenyan Huang, Xi Long, Myrthe van der Ven, Maurits Kaptein, S Guid Oei, Edwin van den Heuvel","doi":"10.1186/s12884-024-07049-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to predict preterm birth in nulliparous women using machine learning and easily accessible variables from prenatal visits. Elastic net regularized logistic regression models were developed and evaluated using 5-fold cross-validation on data from 8,830 women in the Nulliparous Pregnancy Outcomes Study: New Mothers-to-Be (nuMoM2b) dataset at three prenatal visits: <math><msup><mn>6</mn> <mn>0</mn></msup> </math> - <math><msup><mn>13</mn> <mn>6</mn></msup> </math> , <math><msup><mn>16</mn> <mn>0</mn></msup> </math> - <math><msup><mn>21</mn> <mn>6</mn></msup> </math> , and <math><msup><mn>22</mn> <mn>0</mn></msup> </math> - <math><msup><mn>29</mn> <mn>6</mn></msup> </math> weeks of gestational age (GA). The models' performance, assessed using Area Under the Curve (AUC), sensitivity, specificity, and accuracy, consistently improved with the incorporation of data from later prenatal visits. AUC scores increased from 0.6161 in the first visit to 0.7087 in the third visit, while sensitivity and specificity also showed notable improvements. The addition of ultrasound measurements, such as cervical length and Pulsatility Index, substantially enhanced the models' predictive ability. Notably, the model achieved a sensitivity of 0.8254 and 0.9295 for predicting very preterm and extreme preterm births, respectively, at the third prenatal visit. These findings highlight the importance of ultrasound measurements and suggest that incorporating machine learning-based risk assessment and routine late-pregnancy ultrasounds into prenatal care could improve maternal and neonatal outcomes by enabling timely interventions for high-risk women.</p>","PeriodicalId":9033,"journal":{"name":"BMC Pregnancy and Childbirth","volume":"24 1","pages":"843"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pregnancy and Childbirth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12884-024-07049-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to predict preterm birth in nulliparous women using machine learning and easily accessible variables from prenatal visits. Elastic net regularized logistic regression models were developed and evaluated using 5-fold cross-validation on data from 8,830 women in the Nulliparous Pregnancy Outcomes Study: New Mothers-to-Be (nuMoM2b) dataset at three prenatal visits: 6 0 - 13 6 , 16 0 - 21 6 , and 22 0 - 29 6 weeks of gestational age (GA). The models' performance, assessed using Area Under the Curve (AUC), sensitivity, specificity, and accuracy, consistently improved with the incorporation of data from later prenatal visits. AUC scores increased from 0.6161 in the first visit to 0.7087 in the third visit, while sensitivity and specificity also showed notable improvements. The addition of ultrasound measurements, such as cervical length and Pulsatility Index, substantially enhanced the models' predictive ability. Notably, the model achieved a sensitivity of 0.8254 and 0.9295 for predicting very preterm and extreme preterm births, respectively, at the third prenatal visit. These findings highlight the importance of ultrasound measurements and suggest that incorporating machine learning-based risk assessment and routine late-pregnancy ultrasounds into prenatal care could improve maternal and neonatal outcomes by enabling timely interventions for high-risk women.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Pregnancy and Childbirth
BMC Pregnancy and Childbirth OBSTETRICS & GYNECOLOGY-
CiteScore
4.90
自引率
6.50%
发文量
845
审稿时长
3-8 weeks
期刊介绍: BMC Pregnancy & Childbirth is an open access, peer-reviewed journal that considers articles on all aspects of pregnancy and childbirth. The journal welcomes submissions on the biomedical aspects of pregnancy, breastfeeding, labor, maternal health, maternity care, trends and sociological aspects of pregnancy and childbirth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信