Hongru Li, Xuan Wang, Xiangyang Liang, Meiqi Meng, Haixia Zhang, Zixin Li, Yushan Lin, Jihong Li, Cuiqing Ma
{"title":"Verapamil inhibits ferroptosis in septic acute lung injury by blocking L-type calcium channels.","authors":"Hongru Li, Xuan Wang, Xiangyang Liang, Meiqi Meng, Haixia Zhang, Zixin Li, Yushan Lin, Jihong Li, Cuiqing Ma","doi":"10.1016/j.bbrc.2024.151202","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI. Elevated cytosolic calcium early in ferroptosis exacerbates lipid peroxidation and cellular damage. We investigated verapamil, a calcium channel blocker, and found it reduces calcium influx, alleviates iron overload, and decreases oxidative stress, protecting against ferroptosis-induced apoptosis in lung cells. These insights suggest targeting ferroptosis pathways, including calcium and iron homeostasis, may offer new therapeutic strategies for SALI, potentially improving outcomes in ALI/ARDS.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"744 ","pages":"151202"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151202","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI. Elevated cytosolic calcium early in ferroptosis exacerbates lipid peroxidation and cellular damage. We investigated verapamil, a calcium channel blocker, and found it reduces calcium influx, alleviates iron overload, and decreases oxidative stress, protecting against ferroptosis-induced apoptosis in lung cells. These insights suggest targeting ferroptosis pathways, including calcium and iron homeostasis, may offer new therapeutic strategies for SALI, potentially improving outcomes in ALI/ARDS.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics