{"title":"NSC-3852 synergistically enhances the cytotoxicity of olaparib in oral squamous cell carcinoma.","authors":"Yuka Sasaki, Takuma Inouchi, Chie Kise, Ryusuke Nakatsuka, Amane Inoue, Mitsuko Masutani, Tadashige Nozaki","doi":"10.1016/j.bbrc.2024.151166","DOIUrl":null,"url":null,"abstract":"<p><p>The PARP inhibitor olaparib is an anti-cancer agent based on synthetic lethality that targets poly (ADP-ribose) polymerases. It is used as a therapeutic agent for breast, ovarian, pancreatic, and prostate cancers carrying BRCA1/2 mutations that cause deficiency in homologous recombination. In recent years, acquired resistance to PARP inhibitors has become a clinical problem in PARP inhibitor-treated patients. Meanwhile, the development of molecular targeted drugs for highly malignant oral cancers has not progressed, and effective treatment strategies are needed. In this study, we identified the histone deacetylase inhibitor NSC-3852 as a compound that synergistically enhances the effects of olaparib in oral squamous cell carcinoma cell lines. N-Acetyl-l-cysteine treatment partially recovered cell survival after co-treatment with olaparib and NSC-3852. Moreover, the combination of olaparib and NSC-3852 rapidly upregulated γH2AX at 2 h after treatment, and induced S-phase arrest and apoptosis at 24 h after treatment, suggesting that this combination induced apoptosis through accumulation of massive DNA damage. Taken together, these findings demonstrate that NSC-3852 is a sensitizer of olaparib and suggest that the combination of NSC-3852 and olaparib may be a useful therapeutic strategy for homologous recombination-proficient cancers, including cancers with acquired resistance to olaparib and high-grade oral squamous cell carcinoma.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"744 ","pages":"151166"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151166","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The PARP inhibitor olaparib is an anti-cancer agent based on synthetic lethality that targets poly (ADP-ribose) polymerases. It is used as a therapeutic agent for breast, ovarian, pancreatic, and prostate cancers carrying BRCA1/2 mutations that cause deficiency in homologous recombination. In recent years, acquired resistance to PARP inhibitors has become a clinical problem in PARP inhibitor-treated patients. Meanwhile, the development of molecular targeted drugs for highly malignant oral cancers has not progressed, and effective treatment strategies are needed. In this study, we identified the histone deacetylase inhibitor NSC-3852 as a compound that synergistically enhances the effects of olaparib in oral squamous cell carcinoma cell lines. N-Acetyl-l-cysteine treatment partially recovered cell survival after co-treatment with olaparib and NSC-3852. Moreover, the combination of olaparib and NSC-3852 rapidly upregulated γH2AX at 2 h after treatment, and induced S-phase arrest and apoptosis at 24 h after treatment, suggesting that this combination induced apoptosis through accumulation of massive DNA damage. Taken together, these findings demonstrate that NSC-3852 is a sensitizer of olaparib and suggest that the combination of NSC-3852 and olaparib may be a useful therapeutic strategy for homologous recombination-proficient cancers, including cancers with acquired resistance to olaparib and high-grade oral squamous cell carcinoma.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics