Influence of road safety policies on the long-term trends in fatal Crashes: A Gaussian Copula-based time series count model with an autoregressive moving average process.

IF 5.7 1区 工程技术 Q1 ERGONOMICS
Yanqi Lian, Shamsunnahar Yasmin, Md Mazharul Haque
{"title":"Influence of road safety policies on the long-term trends in fatal Crashes: A Gaussian Copula-based time series count model with an autoregressive moving average process.","authors":"Yanqi Lian, Shamsunnahar Yasmin, Md Mazharul Haque","doi":"10.1016/j.aap.2024.107795","DOIUrl":null,"url":null,"abstract":"<p><p>Time series analysis plays a vital role in modeling historical crash trends and predicting the possible changes in future crash trends. In existing safety literature, earlier studies employed multiple approaches to model long-term crash risk profiles, such as integer-valued autoregressive Poisson regression model, integer-valued generalized autoregressive conditional heteroscedastic model, and generalized linear autoregressive and moving average models. However, these modeling frameworks often fail to fully capture several key properties of crash count data, especially negative serial correlation, and nonlinear dependence structures across temporal crash counts. To address these methodological gaps in existing safety literature, this study proposes to use a Gaussian Copula-based model for the long-term crash trend analysis. Specifically, this study proposes to use a Gaussian Copula-based Time Series Count Model with an Autoregressive Moving Average Process for the analysis of long-term trends in fatal crashes. The proposed approach can accommodate several data properties, which include (1) non-negative discrete property of count data, (2) positive and negative serial correlations among time series data, and (3) nonlinear dependence among time-series observations. The performance of the Gaussian Copula-based time series count model is compared with the generalized linear autoregressive and moving average model. The proposed modeling approaches are demonstrated by using yearly fatal crash count data for the years 1986 through 2022 from Queensland, Australia. The major safety interventions implemented in Queensland over those years are also highlighted to assess the possible and plausible impacts of these safety interventions in reducing fatal crash risks. Further, elasticity effects and overall percentage changes in fatal crashes across different time points are computed to demonstrate the implications of the proposed model. The policy analysis exercise shows that the implemented road safety interventions are likely to have diminishing marginal returns, underscoring the need for new and effective road safety policies to achieve the goal of zero fatalities within the set timeframe.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107795"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.aap.2024.107795","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Time series analysis plays a vital role in modeling historical crash trends and predicting the possible changes in future crash trends. In existing safety literature, earlier studies employed multiple approaches to model long-term crash risk profiles, such as integer-valued autoregressive Poisson regression model, integer-valued generalized autoregressive conditional heteroscedastic model, and generalized linear autoregressive and moving average models. However, these modeling frameworks often fail to fully capture several key properties of crash count data, especially negative serial correlation, and nonlinear dependence structures across temporal crash counts. To address these methodological gaps in existing safety literature, this study proposes to use a Gaussian Copula-based model for the long-term crash trend analysis. Specifically, this study proposes to use a Gaussian Copula-based Time Series Count Model with an Autoregressive Moving Average Process for the analysis of long-term trends in fatal crashes. The proposed approach can accommodate several data properties, which include (1) non-negative discrete property of count data, (2) positive and negative serial correlations among time series data, and (3) nonlinear dependence among time-series observations. The performance of the Gaussian Copula-based time series count model is compared with the generalized linear autoregressive and moving average model. The proposed modeling approaches are demonstrated by using yearly fatal crash count data for the years 1986 through 2022 from Queensland, Australia. The major safety interventions implemented in Queensland over those years are also highlighted to assess the possible and plausible impacts of these safety interventions in reducing fatal crash risks. Further, elasticity effects and overall percentage changes in fatal crashes across different time points are computed to demonstrate the implications of the proposed model. The policy analysis exercise shows that the implemented road safety interventions are likely to have diminishing marginal returns, underscoring the need for new and effective road safety policies to achieve the goal of zero fatalities within the set timeframe.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
16.90%
发文量
264
审稿时长
48 days
期刊介绍: Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信