Cooperative control of self-learning traffic signal and connected automated vehicles for safety and efficiency optimization at intersections.

IF 5.7 1区 工程技术 Q1 ERGONOMICS
Gongquan Zhang, Fengze Li, Dian Ren, Helai Huang, Zilong Zhou, Fangrong Chang
{"title":"Cooperative control of self-learning traffic signal and connected automated vehicles for safety and efficiency optimization at intersections.","authors":"Gongquan Zhang, Fengze Li, Dian Ren, Helai Huang, Zilong Zhou, Fangrong Chang","doi":"10.1016/j.aap.2024.107890","DOIUrl":null,"url":null,"abstract":"<p><p>Cooperative control of intersection signals and connected automated vehicles (CAVs) possess the potential for safety enhancement and congestion alleviation, facilitating the integration of CAVs into urban intelligent transportation systems. This research proposes an innovative deep reinforcement learning-based (DRL) cooperative control framework, including signal and speed modules, to dynamically adapt signal timing and CAV velocities for traffic safety and efficiency optimization. Among the DRL-based signal modules, a traffic state prediction model is merged with the current state to augment characteristics and the agent-learning process. A multi-objective reward function is designed to evaluate safety and efficiency using a traffic conflict prediction model and vehicle waiting time. The double deep Q network (DDQN) model is used to design the agent observing the traffic state, learning the optimal signal control policy, and then inputting the signal phase into the speed module. Based on the green duration analysis and constraints of mixed traffic flow of CAVs and human-driven vehicles, a speed planning model is constructed to optimize CAVs' speed and alter traffic state, which in turn affects the agent's next signal decisions. The proposed framework is tested at isolated intersections simulated by two real-world intersections in Changsha, China. The results reveal the superiority of the proposed method over DRL-based traffic signal control (DRL-TSC) in terms of coverage speed and computation time. Compared to actuated signal control, adaptive traffic signal control, and DRL-TSC, the proposed method significantly optimizes traffic safety and efficiency across diverse intersections, temporal spans, and traffic demands. Furthermore, the advantage of the proposed method substantially amplifies with the increased CAV penetration, regardless of the intersection types.</p>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"211 ","pages":"107890"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.aap.2024.107890","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cooperative control of intersection signals and connected automated vehicles (CAVs) possess the potential for safety enhancement and congestion alleviation, facilitating the integration of CAVs into urban intelligent transportation systems. This research proposes an innovative deep reinforcement learning-based (DRL) cooperative control framework, including signal and speed modules, to dynamically adapt signal timing and CAV velocities for traffic safety and efficiency optimization. Among the DRL-based signal modules, a traffic state prediction model is merged with the current state to augment characteristics and the agent-learning process. A multi-objective reward function is designed to evaluate safety and efficiency using a traffic conflict prediction model and vehicle waiting time. The double deep Q network (DDQN) model is used to design the agent observing the traffic state, learning the optimal signal control policy, and then inputting the signal phase into the speed module. Based on the green duration analysis and constraints of mixed traffic flow of CAVs and human-driven vehicles, a speed planning model is constructed to optimize CAVs' speed and alter traffic state, which in turn affects the agent's next signal decisions. The proposed framework is tested at isolated intersections simulated by two real-world intersections in Changsha, China. The results reveal the superiority of the proposed method over DRL-based traffic signal control (DRL-TSC) in terms of coverage speed and computation time. Compared to actuated signal control, adaptive traffic signal control, and DRL-TSC, the proposed method significantly optimizes traffic safety and efficiency across diverse intersections, temporal spans, and traffic demands. Furthermore, the advantage of the proposed method substantially amplifies with the increased CAV penetration, regardless of the intersection types.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
16.90%
发文量
264
审稿时长
48 days
期刊介绍: Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信