Exploring the role of pomalidomide in androgen-dependent prostate cancer: a computational analysis.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Shivani Pathak, Vipendra Kumar Singh, Prashant Kumar Gupta, Arun Kumar Mahapatra, Rajanish Giri, Rashmi Sahu, Rohit Sharma, Neha Garg
{"title":"Exploring the role of pomalidomide in androgen-dependent prostate cancer: a computational analysis.","authors":"Shivani Pathak, Vipendra Kumar Singh, Prashant Kumar Gupta, Arun Kumar Mahapatra, Rajanish Giri, Rashmi Sahu, Rohit Sharma, Neha Garg","doi":"10.1007/s11030-024-11081-7","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PC) is among the most prevalent cancers in males. It is the leading cause of death in men, in around 48 out of 185 countries. Increased androgen receptor (AR) activity is the key factor contributing to the development or progression of newly diagnosed cases of prostate cancer. Over time, numerous compounds targeting AR have been identified, presenting encouraging avenues for suppressing its hyperactivity. In our investigation, we used the GEPIA tool to study the importance of AR in the context of prostate cancer. This tool integrates the data from TCGA and GTEx in the gene expression pattern analysis and their clinical relevance. This analysis evaluates overall survival, disease-free survival, and transcripts per million (TPM) analysis of AR in PC. We performed docking and simulation for FDA-approved anticancer drugs to assess their potential interactions with the AR. We also conducted a comprehensive analysis of drugs using a quantum calculation (DFT) which provides electronic properties, chemical reactivity, and stability using the HOMO-LUMO energy gap. This study suggests that repurposed synthetic anticancer drugs could be better options for treating prostate cancer by inhibiting AR. In this work, we have shown the potential of pomalidomide, a synthetic anticancer drug, as a potential candidate for androgen-dependent PC treatment.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11081-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer (PC) is among the most prevalent cancers in males. It is the leading cause of death in men, in around 48 out of 185 countries. Increased androgen receptor (AR) activity is the key factor contributing to the development or progression of newly diagnosed cases of prostate cancer. Over time, numerous compounds targeting AR have been identified, presenting encouraging avenues for suppressing its hyperactivity. In our investigation, we used the GEPIA tool to study the importance of AR in the context of prostate cancer. This tool integrates the data from TCGA and GTEx in the gene expression pattern analysis and their clinical relevance. This analysis evaluates overall survival, disease-free survival, and transcripts per million (TPM) analysis of AR in PC. We performed docking and simulation for FDA-approved anticancer drugs to assess their potential interactions with the AR. We also conducted a comprehensive analysis of drugs using a quantum calculation (DFT) which provides electronic properties, chemical reactivity, and stability using the HOMO-LUMO energy gap. This study suggests that repurposed synthetic anticancer drugs could be better options for treating prostate cancer by inhibiting AR. In this work, we have shown the potential of pomalidomide, a synthetic anticancer drug, as a potential candidate for androgen-dependent PC treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信