{"title":"Apatinib Mesylate Inhibits Cell Proliferation and the Metastasis of Esophageal Squamous Cell Carcinoma Through ERK/ELK-1/Snail Pathway.","authors":"Xiang Feng, Di Xu, Zhuqin Xing, Qian Zhang","doi":"10.1007/s12013-024-01631-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the impact of apatinib (APT) mesylate on the growth, migration ability, and underlying mechanisms in esophageal squamous cell carcinoma (ESCC) cell lines Kyse30 and Kyse150. Additionally, the anti-metastatic effects of APT mesylate were further validated in a nude mouse xenograft metastasis model. In vitro, APT mesylate treatment significantly reduced cell viability and migration ability in both cell lines in a dose- and time-dependent manner. Western blot analysis showed that APT mesylate inhibited the expression of proteins involved in the ERK/ELK-1/Snail signaling pathway, including ERK1/2, Snail, N-cadherin, and Vimentin, while upregulating E-cadherin expression. In vivo, APT mesylate administration notably decreased the number of pulmonary metastatic nodules in nude mice, with higher doses showing more pronounced effects. The 200 mg/kg high-dose group exhibited a significantly lower number of metastatic nodules compared to the cisplatin (CIS) group. The results suggest that APT mesylate inhibits ESCC cell proliferation and migration primarily by suppressing the ERK/ELK-1/Snail signaling pathway, which mediates epithelial-mesenchymal transition (EMT) and reduces metastasis and invasiveness. This study provides experimental evidence for the potential clinical application of APT mesylate in targeted therapy for ESCC, indicating its promising clinical value.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01631-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the impact of apatinib (APT) mesylate on the growth, migration ability, and underlying mechanisms in esophageal squamous cell carcinoma (ESCC) cell lines Kyse30 and Kyse150. Additionally, the anti-metastatic effects of APT mesylate were further validated in a nude mouse xenograft metastasis model. In vitro, APT mesylate treatment significantly reduced cell viability and migration ability in both cell lines in a dose- and time-dependent manner. Western blot analysis showed that APT mesylate inhibited the expression of proteins involved in the ERK/ELK-1/Snail signaling pathway, including ERK1/2, Snail, N-cadherin, and Vimentin, while upregulating E-cadherin expression. In vivo, APT mesylate administration notably decreased the number of pulmonary metastatic nodules in nude mice, with higher doses showing more pronounced effects. The 200 mg/kg high-dose group exhibited a significantly lower number of metastatic nodules compared to the cisplatin (CIS) group. The results suggest that APT mesylate inhibits ESCC cell proliferation and migration primarily by suppressing the ERK/ELK-1/Snail signaling pathway, which mediates epithelial-mesenchymal transition (EMT) and reduces metastasis and invasiveness. This study provides experimental evidence for the potential clinical application of APT mesylate in targeted therapy for ESCC, indicating its promising clinical value.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.