{"title":"Rapid screening of esophageal squamous cell carcinoma by near-infrared spectroscopy combined with aquaphotomics.","authors":"Qingqing Lu, Lian Li, Wenyan Liang, Guoning Xu, Jing Zhu, Xiaobo Ma, Weilu Tian, Lele Gao, Mengyin Tian, Zhongjian Chen, Hengchang Zang","doi":"10.1016/j.talanta.2024.127399","DOIUrl":null,"url":null,"abstract":"<p><p>Esophageal cancer (EC), the fifth most common cause of cancer-related mortality in China, poses a significant threat to public health. Among the pathological types, esophageal squamous cell carcinoma (ESCC) is predominant, comprising approximately 90 % of cases. Screening is crucial for early detection, diagnosis and treatment, thereby reducing ESCC mortality. This study aimed to develop a rapid, accurate, and cost-effective method based on near-infrared (NIR) spectroscopy combined with aquaphotomics for ESCC screening. NIR spectra were obtained from plasma samples of both healthy controls and ESCC patients. Subsequently, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were utilized to identify the water matrix coordinates (WAMACS), thereby delineating the water absorption spectrum pattern (WASP) and constructing an aquagram. The results showed that the PLS-DA screening test model demonstrated high accuracy and precision rates of 95.12 % and 97.10 %, respectively, along with sensitivity and specificity rates of 97.10 % and 84.62 %. The area under the curve (AUC) achieved 0.9064. Aquaphotomic analysis revealed that the WASP of the healthy group predominantly exhibited strong absorption in regions indicative of strong hydrogen bonds (1460 nm, 1480 nm, 1494 nm), while the WASP of the ESCC group showed strong absorption in regions associated with strong hydrogen bonds, weak hydrogen bonds and free water, especially the regions of weak hydrogen bonds (1434 nm) and free water (1390 nm) were significantly different from those of the healthy group. The findings indicated that the rapid screening model for ESCC, integrating NIR spectroscopy with aquaphotomics, is both effective and feasible, with the WASP presenting as a potentially valuable biomarker for ESCC screening.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127399"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127399","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Esophageal cancer (EC), the fifth most common cause of cancer-related mortality in China, poses a significant threat to public health. Among the pathological types, esophageal squamous cell carcinoma (ESCC) is predominant, comprising approximately 90 % of cases. Screening is crucial for early detection, diagnosis and treatment, thereby reducing ESCC mortality. This study aimed to develop a rapid, accurate, and cost-effective method based on near-infrared (NIR) spectroscopy combined with aquaphotomics for ESCC screening. NIR spectra were obtained from plasma samples of both healthy controls and ESCC patients. Subsequently, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were utilized to identify the water matrix coordinates (WAMACS), thereby delineating the water absorption spectrum pattern (WASP) and constructing an aquagram. The results showed that the PLS-DA screening test model demonstrated high accuracy and precision rates of 95.12 % and 97.10 %, respectively, along with sensitivity and specificity rates of 97.10 % and 84.62 %. The area under the curve (AUC) achieved 0.9064. Aquaphotomic analysis revealed that the WASP of the healthy group predominantly exhibited strong absorption in regions indicative of strong hydrogen bonds (1460 nm, 1480 nm, 1494 nm), while the WASP of the ESCC group showed strong absorption in regions associated with strong hydrogen bonds, weak hydrogen bonds and free water, especially the regions of weak hydrogen bonds (1434 nm) and free water (1390 nm) were significantly different from those of the healthy group. The findings indicated that the rapid screening model for ESCC, integrating NIR spectroscopy with aquaphotomics, is both effective and feasible, with the WASP presenting as a potentially valuable biomarker for ESCC screening.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.