Chunlan Liu, Haijing Zhang, Panpan Chen, Min Wang, Zhining Xia
{"title":"A saccharides regulated fluorescence ratio sensing array for bacterial recognition based on lectin response.","authors":"Chunlan Liu, Haijing Zhang, Panpan Chen, Min Wang, Zhining Xia","doi":"10.1016/j.talanta.2024.127419","DOIUrl":null,"url":null,"abstract":"<p><p>Array sensing employs cross-identification among analytes and various sensing units to identify substances or complex systems. This manuscript presents a fluorescence ratio sensing array based on lectin responses for the accurate identification of different bacteria. This strategy uses a saccharide-sensitive polymer as the sensing unit within the sensor. By incorporating various saccharides, it regulates the properties of the single sensing unit at the molecular level, altering its interaction with the analyte. This modulation leads to the generation of multiple distinct detection signals for the target, effectively facilitating the goal of array sensing. This approach streamlines the design and construction of the array sensor, while simultaneously enhancing detection efficiency. Not only does this sensing strategy achieve the differentiation and quantification of various types of lectins, but it also enables the identification of different bacterial species based on their unique lectin response profiles. This research introduces a novel approach that simplifies the construction of array sensors and simultaneously furnishes a potent tool for diagnosing and assessing bacterial infections within clinical settings.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127419"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127419","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Array sensing employs cross-identification among analytes and various sensing units to identify substances or complex systems. This manuscript presents a fluorescence ratio sensing array based on lectin responses for the accurate identification of different bacteria. This strategy uses a saccharide-sensitive polymer as the sensing unit within the sensor. By incorporating various saccharides, it regulates the properties of the single sensing unit at the molecular level, altering its interaction with the analyte. This modulation leads to the generation of multiple distinct detection signals for the target, effectively facilitating the goal of array sensing. This approach streamlines the design and construction of the array sensor, while simultaneously enhancing detection efficiency. Not only does this sensing strategy achieve the differentiation and quantification of various types of lectins, but it also enables the identification of different bacterial species based on their unique lectin response profiles. This research introduces a novel approach that simplifies the construction of array sensors and simultaneously furnishes a potent tool for diagnosing and assessing bacterial infections within clinical settings.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.