{"title":"A software tool for applying Bayes' theorem in medical diagnostics.","authors":"Theodora Chatzimichail, Aristides T Hatjimihail","doi":"10.1186/s12911-024-02721-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In medical diagnostics, estimating post-test or posterior probabilities for disease, positive and negative predictive values, and their associated uncertainty is essential for patient care.</p><p><strong>Objective: </strong>The aim of this work is to introduce a software tool developed in the Wolfram Language for the parametric estimation, visualization, and comparison of Bayesian diagnostic measures and their uncertainty.</p><p><strong>Methods: </strong>This tool employs Bayes' theorem to estimate positive and negative predictive values and posterior probabilities for the presence and absence of a disease. It estimates their standard sampling, measurement, and combined uncertainty, as well as their confidence intervals, applying uncertainty propagation methods based on first-order Taylor series approximations. It employs normal, lognormal, and gamma distributions.</p><p><strong>Results: </strong>The software generates plots and tables of the estimates to support clinical decision-making. An illustrative case study using fasting plasma glucose data from the National Health and Nutrition Examination Survey (NHANES) demonstrates its application in diagnosing diabetes mellitus. The results highlight the significant impact of measurement uncertainty on Bayesian diagnostic measures, particularly on positive predictive value and posterior probabilities.</p><p><strong>Conclusion: </strong>The software tool enhances the estimation and facilitates the comparison of Bayesian diagnostic measures, which are critical for medical practice. It provides a framework for their uncertainty quantification and assists in understanding and applying Bayes' theorem in medical diagnostics.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"24 1","pages":"399"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02721-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In medical diagnostics, estimating post-test or posterior probabilities for disease, positive and negative predictive values, and their associated uncertainty is essential for patient care.
Objective: The aim of this work is to introduce a software tool developed in the Wolfram Language for the parametric estimation, visualization, and comparison of Bayesian diagnostic measures and their uncertainty.
Methods: This tool employs Bayes' theorem to estimate positive and negative predictive values and posterior probabilities for the presence and absence of a disease. It estimates their standard sampling, measurement, and combined uncertainty, as well as their confidence intervals, applying uncertainty propagation methods based on first-order Taylor series approximations. It employs normal, lognormal, and gamma distributions.
Results: The software generates plots and tables of the estimates to support clinical decision-making. An illustrative case study using fasting plasma glucose data from the National Health and Nutrition Examination Survey (NHANES) demonstrates its application in diagnosing diabetes mellitus. The results highlight the significant impact of measurement uncertainty on Bayesian diagnostic measures, particularly on positive predictive value and posterior probabilities.
Conclusion: The software tool enhances the estimation and facilitates the comparison of Bayesian diagnostic measures, which are critical for medical practice. It provides a framework for their uncertainty quantification and assists in understanding and applying Bayes' theorem in medical diagnostics.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.