Nitrogen-doped porous hydrochar for enhanced chromium(VI) and bisphenol A scavenging: Synergistic effect of chemical activation and hydrothermal doping
Jianhua Qu , Fansong Meng , Fuxuan Bi , Zhao Jiang , Mengning Wang , Qi Hu , Yupeng Zhang , Hui Yu , Ying Zhang
{"title":"Nitrogen-doped porous hydrochar for enhanced chromium(VI) and bisphenol A scavenging: Synergistic effect of chemical activation and hydrothermal doping","authors":"Jianhua Qu , Fansong Meng , Fuxuan Bi , Zhao Jiang , Mengning Wang , Qi Hu , Yupeng Zhang , Hui Yu , Ying Zhang","doi":"10.1016/j.envres.2024.120667","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO<sub>3</sub>, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the S<sub>BET</sub> of material improved from 3.99 m<sup>2</sup>/g and 4.71 m<sup>2</sup>/g to 1176.77 m<sup>2</sup>/g. Meanwhile, NPHC exhibited more superior adsorption capacity for Cr(VI) (323.25 mg/g) and BPA (545.34 mg/g) than that of porous hydrochar (213.17 and 343.67 mg/g). Moreover, NPHC possessed pH-dependence and presented more excellent tolerance for interfering ions and regeneration performance. Notably, the Cr(VI) capture by NPHC was dominated via pore filling, electrostatic interaction, reduction, and complexation, while π-π stacking, H-bond interaction, and hydrophobic action were relevant to the binding mechanism of BPA. Overall, the proposed functionalization strategy for biochar was conducive to enhance the remediation of water bodies.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"267 ","pages":"Article 120667"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124025714","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen-doped porous hydrochar (NPHC) was successfully synthesized by hydrothermal carbonization and activation with KHCO3, which was employed for scavenging hexavalent chromium (Cr(VI)) and bisphenol A (BPA) in contaminated water. N doping increased the unique active sites such as amino and molecular N in NPHC for adsorbing contaminants, and enhanced the activation effect. Compared to original (HC) and N-doped hydrochar (NHC), the SBET of material improved from 3.99 m2/g and 4.71 m2/g to 1176.77 m2/g. Meanwhile, NPHC exhibited more superior adsorption capacity for Cr(VI) (323.25 mg/g) and BPA (545.34 mg/g) than that of porous hydrochar (213.17 and 343.67 mg/g). Moreover, NPHC possessed pH-dependence and presented more excellent tolerance for interfering ions and regeneration performance. Notably, the Cr(VI) capture by NPHC was dominated via pore filling, electrostatic interaction, reduction, and complexation, while π-π stacking, H-bond interaction, and hydrophobic action were relevant to the binding mechanism of BPA. Overall, the proposed functionalization strategy for biochar was conducive to enhance the remediation of water bodies.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.