NK cell cytotoxicity towards pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2024-12-21 DOI:10.1093/stmcls/sxae083
Camilla Henden, Hege B Fjerdingstad, Elisabeth G Bjørnsen, Lavanya Thiruchelvam-Kyle, Michael R Daws, Marit Inngjerdingen, Joel C Glover, Erik Dissen
{"title":"NK cell cytotoxicity towards pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch.","authors":"Camilla Henden, Hege B Fjerdingstad, Elisabeth G Bjørnsen, Lavanya Thiruchelvam-Kyle, Michael R Daws, Marit Inngjerdingen, Joel C Glover, Erik Dissen","doi":"10.1093/stmcls/sxae083","DOIUrl":null,"url":null,"abstract":"<p><p>Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2 and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2 or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2 stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae083","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2 and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2 or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2 stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.

NK细胞对多能干细胞及其神经后代的细胞毒性:激活和抑制受体以及KIR/HLA错配的影响。
多能干细胞为治疗损伤和以前无法治愈的疾病提供了机会。一个主要的问题是干细胞及其后代的免疫原性。在这里,我们剖析了自然杀伤(NK)细胞对人类多能干细胞作出反应的分子机制,研究了多种激活和抑制NK细胞受体及其配体。表达激活受体NKG2D的报告细胞对胚胎干细胞(ES)细胞系和诱导多能干细胞(iPS)细胞系反应强烈,而表达激活受体NKp30、NKp46、KIR2DS1、KIR2DS2和KIR2DS4的报告细胞则没有反应。人类胚胎干细胞和iPS细胞总是表达几种NKG2D配体。HLA-C和HLA-E表达不足或低,不足以触发表达抑制受体KIR2DL1、-2DL2或-2DL3的报告细胞。多能胚胎癌细胞系NTERA-2和2102Ep以及iPS细胞衍生的神经祖细胞也获得了类似的结果。重要的是,神经祖细胞和iPS细胞衍生的运动神经元也表达B7H6,这是激活受体NKp30的配体。与这些观察结果一致,IL-2刺激的NK细胞对ES和iPS细胞以及iPS细胞衍生的运动神经元表现出强大的细胞毒性反应。细胞毒性水平在KIR/HLA匹配和不匹配NK细胞与多能性靶标组合之间无显著差异。综上所述,这些数据表明,多能干细胞及其神经后代是NK细胞杀伤的靶标,因为它们无法充分表达抑制受体的配体,也无法表达激活受体的配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信