{"title":"Vanadium single-atoms coordinated artificial peroxidases as biocatalyst-linked immunosorbent assay for highly-sensitive carcinoembryonic antigen immunoassay.","authors":"Minjia Yuan, Rui Yan, Zhenyang Zhao, Qinlong Wen, Xiaodong Xie, Mohsen Adeli, Shuang Li, Chong Cheng","doi":"10.1016/j.biomaterials.2024.123008","DOIUrl":null,"url":null,"abstract":"<p><p>In medical and biomedical fields, enzyme-mimetic nanomaterials have garnered significant interest as efficacious signal enhancers for biocatalyst-linked immunosorbent assays (BLISA). Despite the burgeoning enthusiasm, engineering artificial biocatalysts that exhibit both exceptional catalytic proficiency and pronounced colorimetric signal output remains a formidable challenge. Inspired by the heme structures and biocatalytic activities of horseradish peroxidase, we introduce the synthesis of vanadium single-atoms (SAV) coordinated artificial peroxidases as BLISA for highly sensitive and selective carcinoembryonic antigen (CEA) immunoassay. Our synthesized SAV exhibits peroxidase (POD)-like activity that is both efficacious and highly specific, surpassing the performance of many other single-atom-structured materials. The SAV-linked immunoassay demonstrates an ultrasensitive response to the target antigen (CEA), with a linear detection range spanning 0.03-10 ng/mL and an impressively low detection limit of 0.335 ng/mL. This straightforward and robust immunoassay technique not only achieves superior signal amplification compared to traditional natural enzymes but also boasts high precision, commendable reproducibility, and remarkable specificity, aligning closely with conventional enzyme-linked immunosorbent assay for CEA detection in serum samples. This study offers a blueprint for designing artificial peroxidase-based colorimetric nanosystems, promoting the evolution of ultrasensitive BLISA applications for the early diagnosis and intervention of cancer.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"123008"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In medical and biomedical fields, enzyme-mimetic nanomaterials have garnered significant interest as efficacious signal enhancers for biocatalyst-linked immunosorbent assays (BLISA). Despite the burgeoning enthusiasm, engineering artificial biocatalysts that exhibit both exceptional catalytic proficiency and pronounced colorimetric signal output remains a formidable challenge. Inspired by the heme structures and biocatalytic activities of horseradish peroxidase, we introduce the synthesis of vanadium single-atoms (SAV) coordinated artificial peroxidases as BLISA for highly sensitive and selective carcinoembryonic antigen (CEA) immunoassay. Our synthesized SAV exhibits peroxidase (POD)-like activity that is both efficacious and highly specific, surpassing the performance of many other single-atom-structured materials. The SAV-linked immunoassay demonstrates an ultrasensitive response to the target antigen (CEA), with a linear detection range spanning 0.03-10 ng/mL and an impressively low detection limit of 0.335 ng/mL. This straightforward and robust immunoassay technique not only achieves superior signal amplification compared to traditional natural enzymes but also boasts high precision, commendable reproducibility, and remarkable specificity, aligning closely with conventional enzyme-linked immunosorbent assay for CEA detection in serum samples. This study offers a blueprint for designing artificial peroxidase-based colorimetric nanosystems, promoting the evolution of ultrasensitive BLISA applications for the early diagnosis and intervention of cancer.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.