Photophysical behavior of meso-N-butylcarbazole-substituted BODIPY in different nano-scale organized media.

IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
E Anjana, Iti Gupta, Ashok Kumar Mishra
{"title":"Photophysical behavior of meso-N-butylcarbazole-substituted BODIPY in different nano-scale organized media.","authors":"E Anjana, Iti Gupta, Ashok Kumar Mishra","doi":"10.1007/s43630-024-00678-4","DOIUrl":null,"url":null,"abstract":"<p><p>The present work focuses on the photophysical behavior of meso-N-butylcarbazole-substituted BODIPY (CBZ-BDP) in different organized media towards exploring the possible use of the dye as a molecular sensor and imaging agent. The molecule shows an appreciable change in absorption and emission spectra at 75% water-acetonitrile mixture compared to pure acetonitrile. In water-acetonitrile mixture, it displays aggregate-induced emission (AIE) bands. New emission peaks are observed at 560 nm and 630 nm, corresponding to LE (locally excited) and ICT (intramolecular charge transfer) states of CBZ-BDP aggregates. The fluorescence anisotropy studies of CBZ-BDP in glycerol medium show its better sensitivity towards the microenvironment. CBZ-BDP was used to probe various microheterogeneous systems like bile salts, pluronics, and lipid bilayer systems in aqueous medium. The dye displays sensitive variation in emission intensity and fluorescence anisotropy in sodium cholate (NaC) bile salt in aqueous medium as a function of the bile salt concentration. The molecule detects the temperature-induced phase transitions in pluronic P123 and F127, as well as 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipid bilayer systems in aqueous medium. These studies strongly suggest that CBZ-BDP can be used as an efficient fluorescent probe in sensing the micro-environmental changes in bile salts, pluronics, and lipid bilayers in aqueous medium. The imaging studies of CBZ-BDP-embedded Giant Unilamellar Vesicles (GUVs) were carried out. The molecule stains the lipid bilayers and displays bright-green fluorescent images, suggesting its potential in lipid bilayer imaging.</p>","PeriodicalId":98,"journal":{"name":"Photochemical & Photobiological Sciences","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemical & Photobiological Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s43630-024-00678-4","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present work focuses on the photophysical behavior of meso-N-butylcarbazole-substituted BODIPY (CBZ-BDP) in different organized media towards exploring the possible use of the dye as a molecular sensor and imaging agent. The molecule shows an appreciable change in absorption and emission spectra at 75% water-acetonitrile mixture compared to pure acetonitrile. In water-acetonitrile mixture, it displays aggregate-induced emission (AIE) bands. New emission peaks are observed at 560 nm and 630 nm, corresponding to LE (locally excited) and ICT (intramolecular charge transfer) states of CBZ-BDP aggregates. The fluorescence anisotropy studies of CBZ-BDP in glycerol medium show its better sensitivity towards the microenvironment. CBZ-BDP was used to probe various microheterogeneous systems like bile salts, pluronics, and lipid bilayer systems in aqueous medium. The dye displays sensitive variation in emission intensity and fluorescence anisotropy in sodium cholate (NaC) bile salt in aqueous medium as a function of the bile salt concentration. The molecule detects the temperature-induced phase transitions in pluronic P123 and F127, as well as 1,2-dimyristoylphosphatidylcholine (DMPC) and 1,2-dipalmitoylphosphatidylcholine (DPPC) lipid bilayer systems in aqueous medium. These studies strongly suggest that CBZ-BDP can be used as an efficient fluorescent probe in sensing the micro-environmental changes in bile salts, pluronics, and lipid bilayers in aqueous medium. The imaging studies of CBZ-BDP-embedded Giant Unilamellar Vesicles (GUVs) were carried out. The molecule stains the lipid bilayers and displays bright-green fluorescent images, suggesting its potential in lipid bilayer imaging.

中- n -丁基咔唑取代BODIPY在不同纳米尺度组织介质中的光物理行为。
本文主要研究了中- n -丁基咔唑取代BODIPY (CBZ-BDP)在不同组织介质中的光物理行为,以探索该染料作为分子传感器和显像剂的可能性。与纯乙腈相比,该分子在75%的水-乙腈混合物中表现出明显的吸收和发射光谱变化。在水-乙腈混合物中,它显示出聚集诱导发射(AIE)带。在560 nm和630 nm处观察到新的发射峰,对应于CBZ-BDP聚集体的LE(局部激发)和ICT(分子内电荷转移)态。CBZ-BDP在甘油介质中的荧光各向异性研究表明其对微环境有较好的敏感性。CBZ-BDP用于探测水介质中的各种微异质系统,如胆盐,pluronics和脂质双分子层系统。染料在胆酸钠(NaC)胆盐水溶液中表现出发射强度和荧光各向异性的敏感变化,是胆盐浓度的函数。该分子在水介质中检测温度诱导的pluronic P123和F127,以及1,2-二myristoylphosphatidylcholine (DMPC)和1,2-dipalmitoylphosphatidylcholine (DPPC)脂质双分子层体系的相变。这些研究强烈表明,CBZ-BDP可以作为一种有效的荧光探针,用于检测水介质中胆盐、pluronics和脂质双分子层的微环境变化。对cbz - bdp包埋巨型单层囊泡(Giant unamellar Vesicles, GUVs)进行了影像学研究。该分子染色脂质双分子层并显示亮绿色荧光图像,表明其在脂质双分子层成像中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Photochemical & Photobiological Sciences
Photochemical & Photobiological Sciences 生物-生化与分子生物学
CiteScore
5.60
自引率
6.50%
发文量
201
审稿时长
2.3 months
期刊介绍: A society-owned journal publishing high quality research on all aspects of photochemistry and photobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信