Balance of Unimolecular and Bimolecular Pathways Control the Temperature-Dependent Kinetics of Ozonolysis in Aerosols.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Ryan S Reynolds, Kevin R Wilson
{"title":"Balance of Unimolecular and Bimolecular Pathways Control the Temperature-Dependent Kinetics of Ozonolysis in Aerosols.","authors":"Ryan S Reynolds, Kevin R Wilson","doi":"10.1021/acs.jpca.4c06885","DOIUrl":null,"url":null,"abstract":"<p><p>To better understand the key kinetic mechanisms controlling heterogeneous oxidation in organic aerosols, submicron particles composed of an alkene and a saturated carboxylic acid are exposed to ozone in a variable-temperature flow tube reactor. Effective uptake coefficients (γ<sub>eff</sub>) are obtained from the multiphase reaction kinetics, which are quantified by Vacuum Ultraviolet Photoionization Aerosol Mass Spectrometry. For aerosols composed of only of alkenes, γ<sub>eff</sub> doubles (from 6 × 10<sup>-4</sup> to 1.2 × 10<sup>-3</sup>) when the temperature is decreased from 293 to 263 K. Alternatively, for an alkene particle doped with a carboxylic acid, an efficient scavenger of stabilized Criegee Intermediates (sCI), γ<sub>eff</sub> is observed to be weakly temperature dependent. A kinetic model, benchmarked to literature data, explains these results as arising from the temperature dependent competition between unimolecular pathways of sCI that promote radical chain cycling and those bimolecular pathways that form stable chain termination products (i.e., α-acyloxyalkyl hydroperoxides). The implication of these results for the kinetics of aerosol aging at low temperatures is discussed.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06885","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To better understand the key kinetic mechanisms controlling heterogeneous oxidation in organic aerosols, submicron particles composed of an alkene and a saturated carboxylic acid are exposed to ozone in a variable-temperature flow tube reactor. Effective uptake coefficients (γeff) are obtained from the multiphase reaction kinetics, which are quantified by Vacuum Ultraviolet Photoionization Aerosol Mass Spectrometry. For aerosols composed of only of alkenes, γeff doubles (from 6 × 10-4 to 1.2 × 10-3) when the temperature is decreased from 293 to 263 K. Alternatively, for an alkene particle doped with a carboxylic acid, an efficient scavenger of stabilized Criegee Intermediates (sCI), γeff is observed to be weakly temperature dependent. A kinetic model, benchmarked to literature data, explains these results as arising from the temperature dependent competition between unimolecular pathways of sCI that promote radical chain cycling and those bimolecular pathways that form stable chain termination products (i.e., α-acyloxyalkyl hydroperoxides). The implication of these results for the kinetics of aerosol aging at low temperatures is discussed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信