Ece Guler, Humeyra B Yekeler, Zarife N Ozdemir Kumral, Gita Parviz, Gul S Ozcan, Burcu Uner, Sinem G Demirbas, Simge Ayyildiz, Yusufhan Yazir, Deepak Kalaskar, Muhammet E Cam
{"title":"Fabrication of Oro-Dispersible Sodium Valproate-Loaded Nanofibrous Patches for Immediate Epileptic Innervation.","authors":"Ece Guler, Humeyra B Yekeler, Zarife N Ozdemir Kumral, Gita Parviz, Gul S Ozcan, Burcu Uner, Sinem G Demirbas, Simge Ayyildiz, Yusufhan Yazir, Deepak Kalaskar, Muhammet E Cam","doi":"10.1021/acsbiomaterials.4c02294","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy is one of the oldest neurological disorders discovered by mankind. This condition is firmly coupled with unprovoked seizures stimulated by irrepressible neuroelectrical blasts. Orally taken valproate family has been employed for prophylactic management; however, oral administration is not applicable for critical scenarios, thus calling for medication routes fulfilling necessities of immediate innervation. In order to address this shortcoming, sodium valproate entrapped in poly(ethylene oxide)/polyvinylpyrrolidone (PEO/PVP) nanofibrous patches was developed with the aim of sublingual drug delivery. Initially, the production process was designed and optimized via the central composite design (CCD). Nanofiber fabrication was accomplished with a novel device by using the pressurized gyration method. Fabricated biomaterials were chemically, spatially, and thermally inspected. The beanless and homogeneous appearance of both virgin and impregnated nanofibrous patches was morphologically demonstrated via scanning electron microscopy. Additionally, adequately oro-dispersed impregnated patches released more than 90% of their drug content in under a minute. Following <i>in vitro</i> cyto-safety assurance acquired through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on SH-SY5Y neuroblastoma cells, the protective antiepileptic effect of impregnated patches was affirmed <i>in vivo</i> via pentylenetetrazole kindled-induced <i>Mus musculus</i> animal modeling. The parameter of <i>in vivo</i> behavioral evaluation was the Racine scoring system. Moreover, histopathological distinctions detected between different test groups were highlighted via fluorescence staining. Finally, the oxidative stress was determined according to quantitative variations of malondialdehyde, glutathione, superoxide dismutase, and catalase levels. The overall conclusion herein suggests that sodium valproate-loaded PEO/PVP nanofibrous patches strikingly prevented behavioral, structural, and oxidative deteriorations caused by pentylenetetrazole.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02294","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy is one of the oldest neurological disorders discovered by mankind. This condition is firmly coupled with unprovoked seizures stimulated by irrepressible neuroelectrical blasts. Orally taken valproate family has been employed for prophylactic management; however, oral administration is not applicable for critical scenarios, thus calling for medication routes fulfilling necessities of immediate innervation. In order to address this shortcoming, sodium valproate entrapped in poly(ethylene oxide)/polyvinylpyrrolidone (PEO/PVP) nanofibrous patches was developed with the aim of sublingual drug delivery. Initially, the production process was designed and optimized via the central composite design (CCD). Nanofiber fabrication was accomplished with a novel device by using the pressurized gyration method. Fabricated biomaterials were chemically, spatially, and thermally inspected. The beanless and homogeneous appearance of both virgin and impregnated nanofibrous patches was morphologically demonstrated via scanning electron microscopy. Additionally, adequately oro-dispersed impregnated patches released more than 90% of their drug content in under a minute. Following in vitro cyto-safety assurance acquired through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on SH-SY5Y neuroblastoma cells, the protective antiepileptic effect of impregnated patches was affirmed in vivo via pentylenetetrazole kindled-induced Mus musculus animal modeling. The parameter of in vivo behavioral evaluation was the Racine scoring system. Moreover, histopathological distinctions detected between different test groups were highlighted via fluorescence staining. Finally, the oxidative stress was determined according to quantitative variations of malondialdehyde, glutathione, superoxide dismutase, and catalase levels. The overall conclusion herein suggests that sodium valproate-loaded PEO/PVP nanofibrous patches strikingly prevented behavioral, structural, and oxidative deteriorations caused by pentylenetetrazole.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture