Ferrante Micaela, Casado Ulises M., Álvarez Vera A., González Jimena S.
{"title":"Mechanical, rheological, nanoindentation and degradability evaluation of soft composite Chitosan/Pectin/NaCl hydrogels with cellulose nanowhiskers","authors":"Ferrante Micaela, Casado Ulises M., Álvarez Vera A., González Jimena S.","doi":"10.1007/s10965-024-04234-7","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan and pectin form biocompatible polyelectrolyte complex hydrogels. This study investigates the impact of cellulose nanowhiskers (CNW) and NaCl on hydrogel’s properties, particularly in mechanical behavior. Swelling tests revealed deswelling under physiological conditions. Thermal analysis indicated enhanced crosslinking with CNW, correlating with mechanical, rheological, and nanoindentation findings. Hydrogels with 10% CNW exhibited higher elastic modulus in compression tests. Rheological studies showed comparable values to skin, promising for wound dressing applications. Nanoindentation highlighted CNWs' surface effect on adhesive modulus. Degradation tests over 21 days demonstrated higher degradation in NaCl-containing hydrogels. Overall, NaCl influenced polymer matrix interactions, while CNW incorporation enhanced hydrogel performance. This study distinguishes between surface and bulk properties of hydrogels, underscoring the potential of CNW in biomaterial applications.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04234-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan and pectin form biocompatible polyelectrolyte complex hydrogels. This study investigates the impact of cellulose nanowhiskers (CNW) and NaCl on hydrogel’s properties, particularly in mechanical behavior. Swelling tests revealed deswelling under physiological conditions. Thermal analysis indicated enhanced crosslinking with CNW, correlating with mechanical, rheological, and nanoindentation findings. Hydrogels with 10% CNW exhibited higher elastic modulus in compression tests. Rheological studies showed comparable values to skin, promising for wound dressing applications. Nanoindentation highlighted CNWs' surface effect on adhesive modulus. Degradation tests over 21 days demonstrated higher degradation in NaCl-containing hydrogels. Overall, NaCl influenced polymer matrix interactions, while CNW incorporation enhanced hydrogel performance. This study distinguishes between surface and bulk properties of hydrogels, underscoring the potential of CNW in biomaterial applications.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including:
polymer synthesis;
polymer reactions;
polymerization kinetics;
polymer physics;
morphology;
structure-property relationships;
polymer analysis and characterization;
physical and mechanical properties;
electrical and optical properties;
polymer processing and rheology;
application of polymers;
supramolecular science of polymers;
polymer composites.