Theoretical Calculation and Experimental Verification of Wear Prediction During the Tightening Process of Bolted Joint

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Wentao Zhang, Liansheng Li, Jin Gao, Jianhua Liu, Hao Gong, Qinghua Wang
{"title":"Theoretical Calculation and Experimental Verification of Wear Prediction During the Tightening Process of Bolted Joint","authors":"Wentao Zhang,&nbsp;Liansheng Li,&nbsp;Jin Gao,&nbsp;Jianhua Liu,&nbsp;Hao Gong,&nbsp;Qinghua Wang","doi":"10.1007/s11249-024-01947-0","DOIUrl":null,"url":null,"abstract":"<div><p>Thread seizure is a common failure mode for bolted joints during the process of tightening, significantly influencing their reliability and detachability. Research results have demonstrated that the accumulation and blocking of wear debris are the main reasons for thread seizure. This study proposed a theoretical model to predict the wear volume on thread surface in the tightening process for the first time. First, many sub-regions on the thread surface were divided. The real contact force and area on each region were calculated considering the nonuniform axial load distribution in a bolted joint. Second, for each sub-region, the micro morphology was characterized by fractal function. Based on the fractal contact theory, the contact model of single asperity was built, and the contact force and area of single asperity were calculated in the stages of elastic, elastoplastic, and plastic deformations. Subsequently, the contact force and contact area of each sub-region were obtained by integral on single asperity. The former was compared with the contact force of sub-region calculated by nonuniform axial load distribution to determine the termination condition of iteration. The latter was brought into the wear prediction model based on Archard wear theory. According to the theoretical model of predicting the wear volume on thread surface, the effects of axial load distribution coefficient, preload, fractal parameters, friction coefficient, and thread pitch on the wear volume of thread surface were analyzed and discussed. Finally, experiments were conducted to validate the reliability of the proposed theoretical prediction model for wear volume.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01947-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thread seizure is a common failure mode for bolted joints during the process of tightening, significantly influencing their reliability and detachability. Research results have demonstrated that the accumulation and blocking of wear debris are the main reasons for thread seizure. This study proposed a theoretical model to predict the wear volume on thread surface in the tightening process for the first time. First, many sub-regions on the thread surface were divided. The real contact force and area on each region were calculated considering the nonuniform axial load distribution in a bolted joint. Second, for each sub-region, the micro morphology was characterized by fractal function. Based on the fractal contact theory, the contact model of single asperity was built, and the contact force and area of single asperity were calculated in the stages of elastic, elastoplastic, and plastic deformations. Subsequently, the contact force and contact area of each sub-region were obtained by integral on single asperity. The former was compared with the contact force of sub-region calculated by nonuniform axial load distribution to determine the termination condition of iteration. The latter was brought into the wear prediction model based on Archard wear theory. According to the theoretical model of predicting the wear volume on thread surface, the effects of axial load distribution coefficient, preload, fractal parameters, friction coefficient, and thread pitch on the wear volume of thread surface were analyzed and discussed. Finally, experiments were conducted to validate the reliability of the proposed theoretical prediction model for wear volume.

Abstract Image

螺栓连接拧紧过程磨损预测的理论计算与实验验证
螺纹卡扣是螺栓连接在紧固过程中常见的失效形式,严重影响螺栓连接的可靠性和可拆卸性。研究结果表明,磨损碎屑的堆积和堵塞是导致螺纹卡住的主要原因。本文首次提出了一种预测螺纹拧紧过程中螺纹表面磨损量的理论模型。首先,在螺纹表面划分了许多子区域。在考虑非均匀轴向载荷分布的情况下,计算了螺栓连接中各区域的实际接触力和面积。其次,用分形函数对各子区域的微观形貌进行表征。基于分形接触理论,建立了单个粗糙体的接触模型,计算了单个粗糙体在弹性、弹塑性和塑性变形阶段的接触力和接触面积。然后,对单个粗糙体进行积分,得到各子区域的接触力和接触面积。将前者与非均匀轴向载荷分布计算的子区域接触力进行比较,确定迭代的终止条件。将后者引入到基于Archard磨损理论的磨损预测模型中。根据螺纹表面磨损量预测的理论模型,分析和讨论了轴向载荷分布系数、预紧力、分形参数、摩擦系数和螺纹节距对螺纹表面磨损量的影响。最后,通过实验验证了所提出的磨损量理论预测模型的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信