{"title":"Exploring multistability and bifurcations in a three-species Smith growth model incorporating refuge, harvesting, and time delays","authors":"Nazmul Sk, Sayan Mandal, Pankaj Kumar Tiwari, Joydev Chattopadhyay","doi":"10.1140/epjp/s13360-024-05874-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study delves into a tritrophic ecological model encompassing three distinct species, elucidating predator–prey dynamics through the lens of Smith growth pattern. The model integrates several pivotal ecological elements, including an additive Allee effect dictating prey growth, a ratio-dependent functional response characterizing predator–prey interactions, the provision of refuge for intermediate predators, and the incorporation of a Michaelis–Menten-type harvesting mechanism of the top predators. Moreover, we incorporate gestation and harvesting delays as novel factors to scrutinize their impact on the overall dynamics of the food web system. Through an extensive analysis of the delayed and non-delayed models, our investigation rigorously explores the equilibrium points, stability attributes, and bifurcations structures. In the absence of time delay, our findings underscore the profound influence wielded by factors such as refuge availability, Allee effect, harvesting, and the availability of environmental resources in dictating the survival prospects of the involved species. Furthermore, our exploratory analysis uncovers a rich tapestry of intricate dynamics, encompassing chaotic behavior, periodic oscillations and, multistability. These revelations underscore the profound complexity inherent in the ecosystem, particularly accentuated by the temporal delays involved in gestation and harvesting processes. The nuanced interplay between these temporal delays and ecological parameters contributes to the emergence of diverse and complex dynamics, elucidating the intricate nature of the ecological systems.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05874-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study delves into a tritrophic ecological model encompassing three distinct species, elucidating predator–prey dynamics through the lens of Smith growth pattern. The model integrates several pivotal ecological elements, including an additive Allee effect dictating prey growth, a ratio-dependent functional response characterizing predator–prey interactions, the provision of refuge for intermediate predators, and the incorporation of a Michaelis–Menten-type harvesting mechanism of the top predators. Moreover, we incorporate gestation and harvesting delays as novel factors to scrutinize their impact on the overall dynamics of the food web system. Through an extensive analysis of the delayed and non-delayed models, our investigation rigorously explores the equilibrium points, stability attributes, and bifurcations structures. In the absence of time delay, our findings underscore the profound influence wielded by factors such as refuge availability, Allee effect, harvesting, and the availability of environmental resources in dictating the survival prospects of the involved species. Furthermore, our exploratory analysis uncovers a rich tapestry of intricate dynamics, encompassing chaotic behavior, periodic oscillations and, multistability. These revelations underscore the profound complexity inherent in the ecosystem, particularly accentuated by the temporal delays involved in gestation and harvesting processes. The nuanced interplay between these temporal delays and ecological parameters contributes to the emergence of diverse and complex dynamics, elucidating the intricate nature of the ecological systems.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.