Thin Layer Quantization Method for a Spin Particle on a Curved Surface

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
S. Kimouche, N. Ferkous
{"title":"Thin Layer Quantization Method for a Spin Particle on a Curved Surface","authors":"S. Kimouche,&nbsp;N. Ferkous","doi":"10.1007/s10773-024-05856-9","DOIUrl":null,"url":null,"abstract":"<div><p>Using the fundamental framework of the thin-layer quantization method, we discuss the non-relativistic limit of the Schrödinger-Dirac equation for a particle constrained to move on a curved surface. We show that the inclusion of spin connections in the formalism give rise to scalar terms which provide a new scalar geometric potential. The coupling between the spin connections determined by the geometry of the curved surface and the spin of the particle can generate bound states even for the repulsive case of this obtained geometric potential. The developed procedure is applied to a surface of axial symmetry. We give three interesting examples of surface confinement, namely cylindrical, spherical and conical, and we explicitly deduce the energy levels for each case.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05856-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using the fundamental framework of the thin-layer quantization method, we discuss the non-relativistic limit of the Schrödinger-Dirac equation for a particle constrained to move on a curved surface. We show that the inclusion of spin connections in the formalism give rise to scalar terms which provide a new scalar geometric potential. The coupling between the spin connections determined by the geometry of the curved surface and the spin of the particle can generate bound states even for the repulsive case of this obtained geometric potential. The developed procedure is applied to a surface of axial symmetry. We give three interesting examples of surface confinement, namely cylindrical, spherical and conical, and we explicitly deduce the energy levels for each case.

曲面上自旋粒子的薄层量化方法
利用薄层量子化方法的基本框架,讨论了约束粒子在曲面上运动的Schrödinger-Dirac方程的非相对论性极限。我们证明了自旋连接在形式体系中的包含产生了标量项,它提供了一个新的标量几何势。由曲面几何形状决定的自旋连接与粒子自旋之间的耦合可以产生束缚态,即使在这种得到的几何势的排斥情况下也是如此。所开发的程序适用于轴对称曲面。我们给出了三个有趣的表面约束例子,即圆柱形、球形和锥形,并明确地推导了每种情况下的能级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信