Enhancement of the Mechanical Properties and Fretting–Corrosion Wear of Biomedical Magnesium Alloys Using Laser Shock Processing Technology

IF 0.4 Q4 ENGINEERING, MECHANICAL
G. Zh. Sakhvadze
{"title":"Enhancement of the Mechanical Properties and Fretting–Corrosion Wear of Biomedical Magnesium Alloys Using Laser Shock Processing Technology","authors":"G. Zh. Sakhvadze","doi":"10.1134/S1052618824701176","DOIUrl":null,"url":null,"abstract":"<p>The magnesium alloy ZK60, which is processed using laser shock processing technology at different laser energies, is examined. Finite element modeling of the laser shock processing technology was carried out to study fretting–corrosion wear of the magnesium alloy ZK60 in an environment simulating body fluids (Hank’s balanced salt solution, HBSS). The mechanical characteristics and fretting–corrosion wear of the magnesium alloy before and after processing using the laser impact hardening technology were investigated. The results showed that the maximum reduction in fretting corrosion wear using the laser impact hardening technology was approximately 73.4%. It is shown that this technology can be applied successfully to reduce the rate of corrosion and fretting–corrosion wear of ZK60 magnesium alloys operating in the HBSS environment.</p>","PeriodicalId":642,"journal":{"name":"Journal of Machinery Manufacture and Reliability","volume":"53 1 supplement","pages":"S58 - S65"},"PeriodicalIF":0.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machinery Manufacture and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1052618824701176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The magnesium alloy ZK60, which is processed using laser shock processing technology at different laser energies, is examined. Finite element modeling of the laser shock processing technology was carried out to study fretting–corrosion wear of the magnesium alloy ZK60 in an environment simulating body fluids (Hank’s balanced salt solution, HBSS). The mechanical characteristics and fretting–corrosion wear of the magnesium alloy before and after processing using the laser impact hardening technology were investigated. The results showed that the maximum reduction in fretting corrosion wear using the laser impact hardening technology was approximately 73.4%. It is shown that this technology can be applied successfully to reduce the rate of corrosion and fretting–corrosion wear of ZK60 magnesium alloys operating in the HBSS environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
33.30%
发文量
61
期刊介绍: Journal of Machinery Manufacture and Reliability  is devoted to advances in machine design; CAD/CAM; experimental mechanics of machines, machine life expectancy, and reliability studies; machine dynamics and kinematics; vibration, acoustics, and stress/strain; wear resistance engineering; real-time machine operation diagnostics; robotic systems; new materials and manufacturing processes, and other topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信