Advances of the past 12 years in decarboxylation of biomass carboxylic acids to biofuels and high-value chemicals via photo- or electrocatalysis

IF 9.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2024-11-29 DOI:10.1039/D4GC04788E
Chen-Qiang Deng and Jin Deng
{"title":"Advances of the past 12 years in decarboxylation of biomass carboxylic acids to biofuels and high-value chemicals via photo- or electrocatalysis","authors":"Chen-Qiang Deng and Jin Deng","doi":"10.1039/D4GC04788E","DOIUrl":null,"url":null,"abstract":"<p >The utilization of renewable platform molecules as feedstocks for manufacturing high-value-added fine chemicals and liquid fuels has become crucial for green and sustainable chemistry and represents a rewarding challenge for today's society. Photochemistry and electrochemistry are effective and powerful tools for the transformation of biomass molecules through free radical intermediates under mild reaction conditions. Numerous direct decarboxylative reactions, without the need for prefunctionalization of carboxylic acids, by photocatalysis or electrocatalysis have been developed during the last few years, with more efficient, step-economical, and low energy consumption processes. In this review, we summarize recent advances in photochemical and electrochemical decarboxylative reactions for the synthesis of alkane fuels and high-value chemicals by utilizing biomass-derived free carboxylic acids as a sustainable source. These transformations can be categorized into four main types as follows: (1) decarboxylative reduction, (2) decarboxylative elimination, (3) decarboxylative coupling, and (4) decarboxylative oxidation. The scope and limitations of these conversions and mechanisms are discussed in detail. Finally, the challenges and perspectives for light or electrically driven decarboxylative transformation of renewable carboxylic acid feedstocks are proposed.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 2","pages":" 275-292"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc04788e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of renewable platform molecules as feedstocks for manufacturing high-value-added fine chemicals and liquid fuels has become crucial for green and sustainable chemistry and represents a rewarding challenge for today's society. Photochemistry and electrochemistry are effective and powerful tools for the transformation of biomass molecules through free radical intermediates under mild reaction conditions. Numerous direct decarboxylative reactions, without the need for prefunctionalization of carboxylic acids, by photocatalysis or electrocatalysis have been developed during the last few years, with more efficient, step-economical, and low energy consumption processes. In this review, we summarize recent advances in photochemical and electrochemical decarboxylative reactions for the synthesis of alkane fuels and high-value chemicals by utilizing biomass-derived free carboxylic acids as a sustainable source. These transformations can be categorized into four main types as follows: (1) decarboxylative reduction, (2) decarboxylative elimination, (3) decarboxylative coupling, and (4) decarboxylative oxidation. The scope and limitations of these conversions and mechanisms are discussed in detail. Finally, the challenges and perspectives for light or electrically driven decarboxylative transformation of renewable carboxylic acid feedstocks are proposed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信