Overview of recent developments in carbon-based nanocomposites for supercapacitor applications

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2024-12-23 DOI:10.1039/D4RA08446B
Esmail Vessally, Rovnag M. Rzayev, Aytan A. Niyazova, Tushar Aggarwal and Konul E. Rahimova
{"title":"Overview of recent developments in carbon-based nanocomposites for supercapacitor applications","authors":"Esmail Vessally, Rovnag M. Rzayev, Aytan A. Niyazova, Tushar Aggarwal and Konul E. Rahimova","doi":"10.1039/D4RA08446B","DOIUrl":null,"url":null,"abstract":"<p >Energy storage devices are recognized as environmentally friendly technologies. Supercapacitors, known for their high cycle stability, have been proposed as potential alternatives to fossil fuels. Recent studies have focused on selecting suitable electrode materials to achieve energy storage systems with high stability, high specific capacity, and biocompatibility. In particular, carbon-based electrode materials, such as graphene oxide, activated carbon, carbon nanotubes, and carbon-based quantum dots, have attracted considerable attention due to their intrinsic properties, such as high conductivity and stability. However, carbon materials alone exhibit limitations, such as low energy density and low specific capacitance. To address this limitation, the synergistic effect of carbon materials has been combined with other electroactive materials to develop electrode materials with enhanced supercapacitor properties. The present study also investigates the supercapacitor performance of carbon-based nanocomposites. It examines the effect of each carbon material (AC, CNT, GO, rGO) on improving the performance of other electroactive materials, including metal oxides, metal sulfides, MXenes, MOFs, and conductive polymers. This study provides valuable insights for further studies on carbon-based electrode materials for supercapacitor applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 54","pages":" 40141-40159"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra08446b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra08446b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy storage devices are recognized as environmentally friendly technologies. Supercapacitors, known for their high cycle stability, have been proposed as potential alternatives to fossil fuels. Recent studies have focused on selecting suitable electrode materials to achieve energy storage systems with high stability, high specific capacity, and biocompatibility. In particular, carbon-based electrode materials, such as graphene oxide, activated carbon, carbon nanotubes, and carbon-based quantum dots, have attracted considerable attention due to their intrinsic properties, such as high conductivity and stability. However, carbon materials alone exhibit limitations, such as low energy density and low specific capacitance. To address this limitation, the synergistic effect of carbon materials has been combined with other electroactive materials to develop electrode materials with enhanced supercapacitor properties. The present study also investigates the supercapacitor performance of carbon-based nanocomposites. It examines the effect of each carbon material (AC, CNT, GO, rGO) on improving the performance of other electroactive materials, including metal oxides, metal sulfides, MXenes, MOFs, and conductive polymers. This study provides valuable insights for further studies on carbon-based electrode materials for supercapacitor applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信