Penggao Liu, Chunrong He, Xinyue Chen, Ting Wang, Wei Song, Weifang Liu and Kaiyu Liu
{"title":"Rational modulation of cellulose for zinc ion-based energy storage devices","authors":"Penggao Liu, Chunrong He, Xinyue Chen, Ting Wang, Wei Song, Weifang Liu and Kaiyu Liu","doi":"10.1039/D4GC03525A","DOIUrl":null,"url":null,"abstract":"<p >Aqueous zinc-ion energy storage technology is currently undergoing intensive exploration. The construction of high-efficiency batteries remains a significant obstacle to the further advancement of novel battery types and enhanced electrochemical performance. Nowadays, cellulose, an abundantly available biopolymer, is garnering attention as a promising green material for energy storage devices, particularly zinc ion-based energy storage devices. Its unique characteristics such as renewability, biodegradability, and excellent chemical stability make it a versatile candidate for various components of zinc-ion energy storage systems. By strategically modulating the properties of cellulose, advanced materials can be developed to enhance the capabilities of zinc-ion storage devices. This review summarizes the structures and characteristics of cellulose before delving into the recent progress achieved in research on zinc-ion energy storage systems using cellulose-based materials. These advancements include cellulose-derived carbon materials for zinc-ion capacitors, flexible zinc-ion capacitors based on cellulose-derived substances, cathodes incorporating cellulose-based hybrids and binders, anodes with cellulose host architectures, surface-modified, self-supporting cellulose separators, cellulose modification of separators, cellulose gel electrolytes and electrolyte additives, and there are prospects for future applications of cellulosic materials in zinc-ion energy storage systems. Through strategic modulation of their properties, the adaptability and efficiency of cellulosic materials in various components of zinc-ion energy storages can be significantly enhanced. Further studies focusing on innovative approaches for modifying, optimizing, and designing cellulosic materials are expected to unlock new avenues for sustainable high-performance energy storage applications.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 2","pages":" 325-351"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/gc/d4gc03525a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc-ion energy storage technology is currently undergoing intensive exploration. The construction of high-efficiency batteries remains a significant obstacle to the further advancement of novel battery types and enhanced electrochemical performance. Nowadays, cellulose, an abundantly available biopolymer, is garnering attention as a promising green material for energy storage devices, particularly zinc ion-based energy storage devices. Its unique characteristics such as renewability, biodegradability, and excellent chemical stability make it a versatile candidate for various components of zinc-ion energy storage systems. By strategically modulating the properties of cellulose, advanced materials can be developed to enhance the capabilities of zinc-ion storage devices. This review summarizes the structures and characteristics of cellulose before delving into the recent progress achieved in research on zinc-ion energy storage systems using cellulose-based materials. These advancements include cellulose-derived carbon materials for zinc-ion capacitors, flexible zinc-ion capacitors based on cellulose-derived substances, cathodes incorporating cellulose-based hybrids and binders, anodes with cellulose host architectures, surface-modified, self-supporting cellulose separators, cellulose modification of separators, cellulose gel electrolytes and electrolyte additives, and there are prospects for future applications of cellulosic materials in zinc-ion energy storage systems. Through strategic modulation of their properties, the adaptability and efficiency of cellulosic materials in various components of zinc-ion energy storages can be significantly enhanced. Further studies focusing on innovative approaches for modifying, optimizing, and designing cellulosic materials are expected to unlock new avenues for sustainable high-performance energy storage applications.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.